469 research outputs found

    The value of remote marine aerosol measurements for constraining radiative forcing uncertainty

    Get PDF
    Aerosol measurements over the Southern Ocean are used to constrain aerosol–cloud interaction radiative forcing (RFaci) uncertainty in a global climate model. Forcing uncertainty is quantified using 1 million climate model variants that sample the uncertainty in nearly 30 model parameters. Measurements of cloud condensation nuclei and other aerosol properties from an Antarctic circumnavigation expedition strongly constrain natural aerosol emissions: default sea spray emissions need to be increased by around a factor of 3 to be consistent with measurements. Forcing uncertainty is reduced by around 7 % using this set of several hundred measurements, which is comparable to the 8 % reduction achieved using a diverse and extensive set of over 9000 predominantly Northern Hemisphere measurements. When Southern Ocean and Northern Hemisphere measurements are combined, uncertainty in RFaci is reduced by 21 %, and the strongest 20 % of forcing values are ruled out as implausible. In this combined constraint, observationally plausible RFaci is around 0.17 W m−2 weaker (less negative) with 95 % credible values ranging from −2.51 to −1.17 W m−2 (standard deviation of −2.18 to −1.46 W m−2). The Southern Ocean and Northern Hemisphere measurement datasets are complementary because they constrain different processes. These results highlight the value of remote marine aerosol measurements

    Protein crystals in adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis

    Get PDF
    Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489–492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors

    The filamentary structures in the CO emission toward the Milky Way disk

    Get PDF
    We present a statistical study of the filamentary structure orientation in the CO emission observations obtained in the Milky Way Imaging Scroll Painting survey in the range 25 (.)degrees . degrees 8 < l < 49 (.)degrees . degrees 7, |b| <= 1 (.)degrees degrees 25, and -100 < v(LSR) < 135 km s(-1). We found that most of the filamentary structures in the (CO)-C-12 and (CO)-C-13 emission do not show a global preferential orientation either parallel or perpendicular to the Galactic plane. However, we found ranges in Galactic longitude and radial velocity where the (CO)-C-12 and (CO)-C-13 filamentary structures are parallel to the Galactic plane. These preferential orientations are different from those found for the HI emission. We consider this an indication that the molecular structures do not simply inherit these properties from parental atomic clouds. Instead, they are shaped by local physical conditions, such as stellar feedback, magnetic fields, and Galactic spiral shocks

    Dynamics of trimming the content of face representations for categorization in the brain

    Get PDF
    To understand visual cognition, it is imperative to determine when, how and with what information the human brain categorizes the visual input. Visual categorization consistently involves at least an early and a late stage: the occipito-temporal N170 event related potential related to stimulus encoding and the parietal P300 involved in perceptual decisions. Here we sought to understand how the brain globally transforms its representations of face categories from their early encoding to the later decision stage over the 400 ms time window encompassing the N170 and P300 brain events. We applied classification image techniques to the behavioral and electroencephalographic data of three observers who categorized seven facial expressions of emotion and report two main findings: (1) Over the 400 ms time course, processing of facial features initially spreads bilaterally across the left and right occipito-temporal regions to dynamically converge onto the centro-parietal region; (2) Concurrently, information processing gradually shifts from encoding common face features across all spatial scales (e.g. the eyes) to representing only the finer scales of the diagnostic features that are richer in useful information for behavior (e.g. the wide opened eyes in 'fear'; the detailed mouth in 'happy'). Our findings suggest that the brain refines its diagnostic representations of visual categories over the first 400 ms of processing by trimming a thorough encoding of features over the N170, to leave only the detailed information important for perceptual decisions over the P300

    P2 nucleotide receptors on C2C12 satellite cells

    Get PDF
    In developing muscle cells environmental stimuli transmitted by purines binding to the specific receptors are crucial proliferation regulators. C2C12 myoblasts express numerous purinergic receptors representing both main classes: P2X and P2Y. Among P2Y receptors we have found the expression of P2Y1, P2Y2, P2Y4, P2Y6 and P2Y12 family members while among P2X receptors P2X4, P2X5 and P2X7 were discovered. We have been able to show that activation of those receptors is responsible for ERK class kinase activity, responsible for regulation of cell proliferation pathway. We have also demonstrated that this activity is calcium dependent suggesting Ca2+ ions as secondary messenger between receptor and kinase regulatory system. More specifically, we do suspect that in C2C12 myoblasts calcium channels of P2X receptors, particularly P2X5 play the main role in proliferation regulation. In further development of myoblasts into myotubes, when proliferation is gradually inhibited, the pattern of P2 receptors is changed. This phenomenon is followed by diminishing of the P2Y2-dependent Ca2+ signaling, while the mRNA expression of P2Y2 receptor reminds still on the high level. Moreover, P2X2 receptor mRNA, absent in myoblasts appears in myotubes. These data show that differentiation of C2C12 cell line satellite myoblasts is accompanied by changes in P2 receptors expression pattern

    Quality of life: international and domestic students studying medicine in New Zealand

    Get PDF
    International students form a significant proportion of students studying within universities in Western countries. The quality of life perceptions of international medical students in comparison with domestic medical students has not been well documented. There is some evidence to suggest that international medical students may have different educational and social experiences in relation to their domestic peers. This study investigates the levels of quality of life experienced by international and domestic students studying medicine. A total of 548 medical students completed the abbreviated version of the World Health Organization Quality of Life questionnaire. The focus of the analysis was to evaluate differences between international and domestic students in their early clinical years. The responses were analysed using multivariate analysis of variance methods. International medical students are experiencing lower social and environmental quality of life compared with domestic peers. International medical students in New Zealand have expressed quality of life concerns, which likely have an impact on their academic achievement, feelings of wellness, acculturation, and social adaptation. The findings reinforce the need for creating stronger social networks and accessible accommodation, as well as developing systems to ensure safety, peer mentorship and student support.published_or_final_versio

    The history of dynamics and stellar feedback revealed by the HI filamentary structure in the disk of the Milky Way

    Get PDF
    We present a study of the filamentary structure in the emission from the neutral atomic hydrogen (HI) at 21 cm across velocity channels in the 40 '' and 1.5-km s(-1) resolution position-position-velocity cube, resulting from the combination of the single-dish and interferometric observations in The HI/OH/recombination-line survey of the inner Milky Way. Using the Hessian matrix method in combination with tools from circular statistics, we find that the majority of the filamentary structures in the HI emission are aligned with the Galactic plane. Part of this trend can be assigned to long filamentary structures that are coherent across several velocity channels. However, we also find ranges of Galactic longitude and radial velocity where the HI filamentary structures are preferentially oriented perpendicular to the Galactic plane. These are located (i) around the tangent point of the Scutum spiral arm and the terminal velocities of the Molecular Ring, around l approximate to 28 degrees and v(LSR) approximate to 100 km s(-1), (ii) toward l approximate to 45 degrees and v(LSR) approximate to 50 km s(-1), (iii) around the Riegel-Crutcher cloud, and (iv) toward the positive and negative terminal velocities. A comparison with numerical simulations indicates that the prevalence of horizontal filamentary structures is most likely the result of large-scale Galactic dynamics and that vertical structures identified in (i) and (ii) may arise from the combined effect of supernova (SN) feedback and strong magnetic fields. The vertical filamentary structures in (iv) can be related to the presence of clouds from extra-planar HI gas falling back into the Galactic plane after being expelled by SNe. Our results indicate that a systematic characterization of the emission morphology toward the Galactic plane provides an unexplored link between the observations and the dynamical behavior of the interstellar medium, from the effect of large-scale Galactic dynamics to the Galactic fountains driven by SNe

    Cloud formation in the atomic and molecular phase: HI self absorption (HISA) towards a Giant Molecular Filament

    Get PDF
    Molecular clouds form from the atomic phase of the interstellar medium. However, characterizing the transition between the atomic and the molecular interstellar medium (ISM) is a difficult observational task. Here we address cloud formation processes by combining HSIA with molecular line data. One scenario proposed by numerical simulations is that the column density probability density functions (N-PDF) evolves from a log-normal shape at early times to a power-law-like shape at later times. In this paper, we study the cold atomic component of the giant molecular filament GMF38a (d=3.4 kpc, length230\sim230 pc). We identify an extended HISA feature, which is partly correlated with the 13CO emission. The peak velocities of the HISA and 13CO observations agree well on the eastern side of the filament, whereas a velocity offset of approximately 4 km s1^{-1} is found on the western side. The sonic Mach number we derive from the linewidth measurements shows that a large fraction of the HISA, which is ascribed to the cold neutral medium (CNM), is at subsonic and transonic velocities. The column density of the CNM is on the order of 1020^{20} to 1021^{21} cm2^{-2}. The column density of molecular hydrogen is an order of magnitude higher. The N-PDFs from HISA (CNM), HI emission (WNM+CNM), and 13CO (molecular component) are well described by log-normal functions, which is in agreement with turbulent motions being the main driver of cloud dynamics. The N-PDF of the molecular component also shows a power law in the high column-density region, indicating self-gravity. We suggest that we are witnessing two different evolutionary stages within the filament. The eastern subregion seems to be forming a molecular cloud out of the atomic gas, whereas the western subregion already shows high column density peaks, active star formation and evidence of related feedback processes
    corecore