28 research outputs found

    Geophysical investigations of a geothermal anomaly at Wadi Ghadir, eastern Egypt

    Get PDF
    During regional heat flow studies a geothermal anomaly was discovered approximately 2 km from the Red Sea coast at Wadi Ghadir, in the Red Sea Hills of Eastern Egypt. A temperature gradient of 55 C/km was measured in a 150 m drillhole at this location, indicating a heat flow of approximately 175 mw/sqm, approximately four times the regional background heat flow for Egypt. Gravity and magnetic data were collected along Wadi Ghadir, and combined with offshore gravity data, to investigate the source of the thermal anomaly. Magnetic anomalies in the profile do not coincide with the thermal anomaly, but were observed to correlate with outcrops of basic rocks. Other regional heat flow and gravity data indicate that the transition from continental to oceanic type lithosphere occurs close to the Red Sea margin, and that the regional thermal anomaly is possibly related to the formation of the Red Sea

    No selection on immunological markers in response to a highly virulent pathogen in an Arctic breeding bird

    Get PDF
    In natural populations, epidemics provide opportunities to look for intense natural selection on genes coding for life history and immune or other physiological traits. If the populations being considered are of management or conservation concern, then identifying the traits under selection (or 'markers') might provide insights into possible intervention strategies during epidemics. We assessed potential for selection on multiple immune and life history traits of Arctic breeding common eiders (Somateria mollissima) during annual avian cholera outbreaks (summers of 2006, 2007 & 2008). We measured prelaying body condition, immune traits, and subsequent reproductive investment (i.e., clutch size) and survival of female common eiders and whether they were infected with Pasteurella multocida, the causative agent of avian cholera. We found no clear and consistent evidence of directional selection on immune traits; however, infected birds had higher levels of haptoglobin than uninfected birds. Also, females that laid larger clutches had slightly lower immune responses during the prelaying period reflecting possible downregulation of the immune system to support higher costs of reproduction. This supports a recent study indicating that birds investing in larger clutches were more likely to die from avian cholera and points to a possible management option to maximize female survival during outbreaks

    Predatory cue use in flush responses of a colonial nesting seabird during polar bear foraging

    No full text
    Nest predation is a primary cause of reproductive failure in birds; thus, predators apply strong selective pressure on nesting behaviour, especially risk assessment behaviours during predator encounters at nests. Prey\u27s risk assessments are not static; rather, dynamic risk assessment theory predicts that prey assess risk in real-time and update it according to changes in cues posed by the predator(s). We used drone videography to film nest-flushing behaviours of common eiders, Somateria mollissima, in response to foraging polar bears, Ursus maritimus, on East Bay Island (Nunavut, Canada). We assessed how cue use influenced flushing behaviour and nest fate in a path analysis using 200 observations of 193 eiders in 2017. Our most supported model found that more direct angles of visual gaze and travel angle by polar bears resulted in conspicuous nest flushes by eiders (ÎČ = −0.236 ± 0.059), whereas the presence of herring gulls, Larus argentatus, resulted in more discrete flushes of hens walking from their nests (ÎČ = −0.181 ± 0.059). Shorter flush initiation distances between eiders and approaching bears resulted in greater nest predation by polar bears (ÎČ = −0.203 ± 0.076). We found no support that an eider\u27s visibility from the nest influenced any component of flushing behaviour. We suggest that during encounters with bears, eiders are capable of assessing risk and making appropriate behavioural decisions to reduce the chances of nest loss. However, as the colony experienced heavy predation by bears in 2017, behavioural responses alone appear to be insufficient to mitigate polar bear predation at the population level

    Higher rates of prebreeding condition gain positively impacts clutch size: A mechanistic test of the condition-dependent individual optimization model

    Get PDF
    International audienceA combination of timing of and body condition (i.e., mass) at arrival on the breeding grounds interact to influence the optimal combination of the timing of reproduction and clutch size in migratory species. This relationship has been formalized by Rowe et al. in a condition‐dependent individual optimization model (American Naturalist, 1994, 143, 689‐722), which has been empirically tested and validated in avian species with a capital‐based breeding strategy. This model makes a key, but currently untested prediction; that variation in the rate of body condition gain will shift the optimal combination of laying date and clutch size. This prediction is essential because it implies that individuals can compensate for the challenges associated with late timing of arrival or poor body condition at arrival on the breeding grounds through adjustment of their life history investment decisions, in an attempt to maximize fitness. Using an 11‐year data set in arctic‐nesting common eiders (Somateria mollissima), quantification of fattening rates using plasma triglycerides (an energetic metabolite), and a path analysis approach, we test this prediction of this optimization model; controlling for arrival date and body condition, females that fatten more quickly will adjust the optimal combination of lay date and clutch size, in favour of a larger clutch size. As predicted, females fattening at higher rates initiated clutches earlier and produced larger clutch sizes, indicating that fattening rate is an important factor in addition to arrival date and body condition in predicting individual variation in reproductive investment. However, there was no direct effect of fattening rate on clutch size (i.e., birds laying on the same date had similar clutch sizes, independent of their fattening rate). Instead, fattening rate indirectly affected clutch size via earlier lay dates, thus not supporting the original predictions of the optimization model. Our results demonstrate that variation in the rate of condition gain allows individuals to shift flexibly along the seasonal decline in clutch size to presumably optimize the combination of laying date and clutch size
    corecore