33 research outputs found

    A new upper Paleogene to Neogene stratigraphy for Sarawak and Labuan in northwestern Borneo:Paleogeography of the eastern Sundaland margin

    Get PDF
    The Miri Zone in Sarawak contains thick Paleogene to Neogene sedimentary successions that extend offshore into the Sarawak Basin (Balingian and Central Luconia Provinces) and Sabah Basin. Exploration offshore has shown the Sarawak Basin in the South China Sea contains major hydrocarbon reservoirs. The sediments on land are age equivalents of the offshore successions and can be used to provide insights into their sedimentological and stratigraphic relations. However, because the rocks are found in mountainous regions covered by dense rainforest much of the stratigraphy in the Miri Zone is poorly known, as are timings and causes of major unconformities in the region that are essential for understanding the tectonic history, basin development, and sedimentary pathways. In this study we integrate fieldwork, U–Pb zircon dating, biostratigraphy, and light and heavy mineral analyses to present a revised stratigraphy for the region as well as paleogeographic maps, including major paleo-river systems for the main sedimentary basins. Rocks studied include parts of the Cretaceous to Eocene deep marine Rajang Group, fluvial to marginal marine sediments of the Oligocene to Early Miocene Tatau, Buan, Nyalau and Setap Shale Formations, and the Miocene sediments which are assigned to the Balingian, Begrih and Liang Formations in the Mukah-Balingian province, and the Belait Formation on Labuan. There is still much debate about the timings or even existence of some important unconformities offshore, such as the Middle Miocene Unconformity (MMU) and Deep Regional Unconformity (DRU). We propose to avoid the ambiguous time-based terminology that has been used for different events by different authors. Instead, our results from the on-land stratigraphy show two main unconformities in northern Sarawak; one at c. 37 Ma (Rajang Unconformity), marking the change from deep marine to fluvial – marginal marine sedimentation, and another one at c. 17 Ma (Nyalau Unconformity) which is related to widespread uplift in Borneo and changing river systems

    Provenance of Oligocene–Miocene sedimentary rocks in the Cuu Long and Nam Con Son basins, Vietnam and early history of the Mekong River

    Get PDF
    The offshore Cuu Long (CLB) and Nam Con Son (NCSB) basins of SE Vietnam are two important Cenozoic hydrocarbon-bearing basins in the southern South China Sea (SCS), which can contribute to understanding the evolution of major SE Asian river systems, in particular the Mekong River. The Oligocene to Early Miocene basin fill of the Cuu Long Basin is dominated by sediment sourced locally from the Da Lat Zone basement on land. Sandstones have abundant Cretaceous detrital zircons and heavy mineral assemblages dominated by apatite and epidote. The Bach Ho Unconformity at c. 16 to 20.5 Ma marks a major provenance change and the overlying Middle to Late Miocene Con Son and Dong Nai formations were sourced by a large river system, which drained Indochina or even the Himalaya, resembling the present-day Mekong River. These formations have heterogeneous detrital zircon populations dominated by Triassic ages and zircon–rutile–tourmaline-dominated heavy mineral assemblages. The Oligocene Cau and Early Miocene Dua formations of the Nam Con Son Basin have a similar provenance to the CLB Con Son and Dong Nai formations, indicating a comparable drainage history of a large proto-Chao Phraya. At the Dua Unconformity at c. 15.4 to 17 Ma the Indochina provenance signature changes to a predominant Sibumasu signature. The early Mekong River evolution is suggested to have involved two river systems. A proto-Mekong 1 initially filled the CLB, while at the same time a proto-Chao Phraya River with a capture area into the Himalaya filled the Malay Basin and/or the NCSB. At the end of the Early Miocene drainage was completely reorganised, and the proto-Mekong 1 captured the headwaters of the proto-Chao Phraya and became the proto-Mekong 2, while the NCSB was filled by sediment from the Malay–Thai Peninsula. This major change marks a very important drainage reorganisation in the southern SCS region

    Precambrian olistoliths masquerading as sills from Death Valley, California

    Get PDF
    Olistolith production and magmatism are processes commonly associated with extensional tectonic settings, such as rift basins. We present a cautionary exemplar from one such Precambrian basin, in which we reinterpret metabasite bodies, previously documented as sills, to be olistoliths. We nevertheless demonstrate that, on the basis of field observation alone, the previous but erroneous sill interpretation is parsimonious. Indeed, it is only by using isotopic age and compositional analysis that the true identities of these metabasite olistoliths are revealed. We present new data from metabasites and metasedimentary strata of the Kingston Peak Formation (Cryogenian) and Crystal Spring Formation (Mesoproterozoic) of Death Valley, USA. These include field observations, U?Pb apatite ages, U?Pb zircon ages (detrital and igneous) and whole-rock geochemistry. These data also provide a new maximum age for the base of the Pahrump Group and suggest that the Crystal Spring Diabase was more tholeiitic than previously thought. Similar sill/olistolith misinterpretations may have occurred elsewhere, potentially producing erroneous age and tectonic-setting interpretations of surrounding strata. This is particularly relevant in Precambrian rocks, where fossil age constraints are rare. This is illustrated herein using a potential example from the Neoproterozoic literature of the Lufilian belt, Africa. We caution others against Precambrian olistoliths masquerading as sills.publishersversionPeer reviewe

    Mesozoic Paleo-Pacific Subduction Beneath SW Borneo: U-Pb Geochronology of the Schwaner Granitoids and the Pinoh Metamorphic Group

    Get PDF
    The Schwaner Mountains in southwestern Borneo form a large igneous province with a complex magmatic history and poorly known tectonic history. Previously it was known that Cretaceous granitoids intruded metamorphic rocks of the Pinoh Metamorphic Group assumed to be of Paleozoic age. Jurassic granitoids had been reported from the southern Schwaner Mountains. Most ages were based on K-Ar dating. We present new geochemistry, zircon U-Pb and 40Ar/39Ar age data from igneous and metamorphic rocks from the Schwaner Mountains to investigate their tectono-magmatic histories. We subdivide the Schwaner Mountains into three different zones which record rifting, subduction-related and post-collisional magmatism. The Northwest Schwaner Zone (NWSZ) is part of the West Borneo Block which in the Triassic was within the Sundaland margin. It records Triassic to Jurassic magmatism during early Paleo-Pacific subduction. In contrast, the North Schwaner Zone (NSZ) and South Schwaner Zone (SSZ) are part of the SW Borneo (Banda) Block that separated from NW Australia in the Jurassic. Jurassic granitoids in the SSZ are within-plate (A-type) granites interpreted to have formed during rifting. The SW Borneo (Banda) Block collided with eastern Sundaland at c. 135 Ma. Following this, large I-type granitoid plutons and arc volcanics formed in the NWSZ and NSZ between c. 90 and 132 Ma, associated with Cretaceous Paleo-Pacific subduction. The largest intrusion is the c. 110 to 120 Ma Sepauk Tonalite. After collision of the East Java-West Sulawesi (Argo) Block, subduction ceased and post-collisional magmatism produced the c. 78 to 85 Ma Sukadana Granite and the A-type 72 Ma Sangiyang Granite in the SSZ. Rocks of the Pinoh Metamorphic Group mainly exposed in the NSZ, previously assumed to represent Paleozoic basement, contain abundant Early Cretaceous (110 to 135 Ma) zircons. They are interpreted as volcaniclastic sediments that formed contemporaneously with subduction-related volcanic rocks of the NSZ subsequently metamorphosed during intrusion of Cretaceous granitoids. There are no igneous rocks older than Cretaceous in the NSZ and older than Jurassic in the SSZ and there is no evidence for a continuation of a Triassic volcanic arc crossing Borneo from Sundaland to the east.This project was funded by the SE Asia Research Group of Royal Holloway University of London, which is supported by a consortium of oil companies

    U-Pb zircon geochronology of rocks from west Central Sulawesi, Indonesia: Extension-related metamorphism and magmatism during the early stages of mountain building

    Get PDF
    Sulawesi has generally been interpreted as the product of convergence in the Cretaceous and Cenozoic, and high mountains in west Central Sulawesi have been considered the product of magmatism and metamorphism related to Neogene collision. New SHRIMP and LA-ICP-MS U-Pb zircon dating of metamorphic and granitoid rocks has identified protoliths and sources of melts, and indicates an important role for extension. Schists, gneisses and granitoids have inherited Proterozoic, Paleozoic, Mesozoic and Paleogene zircons. Mesoproterozoic and Triassic age populations are similar to those from the Bird's Head region. Their protoliths included sediments and granitoids interpreted as part of an Australian-origin block. We suggest this rifted from the Australian margin of Gondwana in the Jurassic and accreted to Sundaland to form NW Sulawesi in the Late Cretaceous. Some metamorphic rocks have Cretaceous and/or Late Eocene magmatic zircons indicating metamorphism cannot be older than Late Eocene, and were not Australian-origin basement. Instead, they were metamorphosed in the Neogene after Sula Spur collision and subsequent major extension. Associated magmatism in west Central Sulawesi produced a K-rich shoshonitic (HK) suite in the Middle Miocene to Early Pliocene. A later episode of magmatism in the Late Miocene to Pliocene formed mainly shoshonitic to high-K calc-alkaline (CAK) rocks. I-type and silica-rich I-type granitoids and diorites of the CAK suite record a widespread short interval of magmatism between 8.5 and 4. Ma. Inherited zircon ages indicate the I-type CAK rocks were the product of partial melting of the HK suite. S-type CAK magmatism between c. 5 and 2.5. Ma and zircon rim ages from gneisses record contemporaneous metamorphism that accompanied extension. Despite its position in a convergent setting in Indonesia, NW Sulawesi illustrates the importance of melting and metamorphism in an extensional setting during the early stages of mountain building

    Feilke revisited : 60 Stellenbesuche

    Get PDF
    Weitere Hrsg.: Thorsten Pohl, Sara Rezat, Torsten Steinhoff, Martin SteinseiferAnlĂ€sslich des 60. Geburtstags des Linguisten und Sprachdidaktikers Helmuth Feilke wurden Wegbegleiterinnen und Wegbegleiter gebeten, einzelne Stellen in seinen wissenschaftlichen Schriften erneut zu besuchen. Entstanden sind pointierte Kommentare, kurze wissenschaftliche Abhandlungen und Analysen, Varianten auch des kritischen und kontroversen Nach- und Weiterdenkens und AnsĂ€tze zur Neu- oder Re-Kontextualisierung. Je nach wissenschaftlicher Vita der Autorinnen und Autoren kann es sich um Stellen handeln, deren Rezeption zeitlich weit zurĂŒckliegt, oder um Passagen, die ganz aktuelle Fragen der eigenen Forschungsarbeit tangieren. Abgesehen davon, dass ein kurzes Format fĂŒr die BeitrĂ€ge gewĂ€hlt und die Autorinnen und Autoren gebeten wurden, die ausgewĂ€hlte Stelle knapp zu verorten und zu erlĂ€utern, war die Bearbeitungsform gĂ€nzlich freigestellt. So sind Texte in einer Bandbreite von pointierten Kommentaren, kurzen wissenschaftlichen Abhandlungen und Analysen, Varianten des Nach- und Weiterdenkens, AnsĂ€tze zur Neu- oder Re-Kontextualisierung bis hin zu Formen des kritischen Hinterfragens und der kontroversen Auseinandersetzung entstanden

    Rapid cooling and exhumation as a consequence of extension and crustal thinning: Inferences from the Late Miocene to Pliocene Palu Metamorphic Complex, Sulawesi, Indonesia

    No full text
    Metamorphic complexes forming high mountains of 1.5–2 km in Western Sulawesi were previously considered to be Mesozoic or older basement of Gondwana crust. However, many of the metamorphic rocks are much younger than previously thought. Some have Eocene sedimentary protoliths. New geothermobarometric and geochronological data from metamorphic rocks of the Palu Metamorphic Complex (PMC) and associated granitoids provide information on the timing and mechanisms of Neogene metamorphism and contemporaneous rapid exhumation. The metamorphic rocks are strongly deformed and some were partially melted to form migmatites. Schists contain relict andalusite, cordierite, staurolite and Mn-rich garnet which are wrapped by a pervasive fabric. 40Ar/39Ar dating of biotite, white mica and amphibole from strongly deformed, mylonitic schists and recrystallised amphibolites reveals cooling occurred in the Early Pliocene (c. 5.3–4.8 Ma) in the northern part and during the Late Pliocene (c. 3.1–2.7 Ma) in the southern part of the PMC. U-Pb, 40Ar/39Ar and (U-Th)/He analyses of various minerals from PMC metamorphic and S-type magmatic rocks give very similar mid to Late Pliocene ages, indicating very fast cooling and rapid exhumation, and show the high speed at which tectonic processes, including magmatism, exhumation, and reworking into a sediment, must have occurred. The high rates could be unique to this area but we suggest they record the true speed of metamorphic complex exhumation in a very young orogenic belt. Rates in older orogens appear lower because they are averages measured over longer periods of time. Contemporaneous magmatism and deformation are interpreted as a consequence of decompressional melting due to extension and thinning of the crust, promoted by possible detachment faults and normal faulting at the major NW-trending Palu-Koro and Tambarana Faults. In contrast, I-type magmatic rocks, separated from the PMC by the Palu-Koro Fault, were exhumed from upper crustal levels by erosion at moderate rates.This study was supported by the SE Asia Research Group which is funded by a consortium of oil companies
    corecore