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Abstract
The offshore Cuu Long (CLB) and Nam Con Son (NCSB) basins of SE Vietnam are two important Cenozoic hydrocarbon-
bearing basins in the southern South China Sea (SCS), which can contribute to understanding the evolution of major SE 
Asian river systems, in particular the Mekong River. The Oligocene to Early Miocene basin fill of the Cuu Long Basin is 
dominated by sediment sourced locally from the Da Lat Zone basement on land. Sandstones have abundant Cretaceous 
detrital zircons and heavy mineral assemblages dominated by apatite and epidote. The Bach Ho Unconformity at c. 16 to 
20.5 Ma marks a major provenance change and the overlying Middle to Late Miocene Con Son and Dong Nai formations 
were sourced by a large river system, which drained Indochina or even the Himalaya, resembling the present-day Mekong 
River. These formations have heterogeneous detrital zircon populations dominated by Triassic ages and zircon–rutile–tour-
maline-dominated heavy mineral assemblages. The Oligocene Cau and Early Miocene Dua formations of the Nam Con Son 
Basin have a similar provenance to the CLB Con Son and Dong Nai formations, indicating a comparable drainage history 
of a large proto-Chao Phraya. At the Dua Unconformity at c. 15.4 to 17 Ma the Indochina provenance signature changes to 
a predominant Sibumasu signature.
The early Mekong River evolution is suggested to have involved two river systems. A proto-Mekong 1 initially filled the 
CLB, while at the same time a proto-Chao Phraya River with a capture area into the Himalaya filled the Malay Basin and/
or the NCSB. At the end of the Early Miocene drainage was completely reorganised, and the proto-Mekong 1 captured the 
headwaters of the proto-Chao Phraya and became the proto-Mekong 2, while the NCSB was filled by sediment from the 
Malay–Thai Peninsula. This major change marks a very important drainage reorganisation in the southern SCS region.
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Introduction

The Cenozoic basins of the South China Sea (SCS) margin 
have a long history of successful hydrocarbon explora-
tion and production. Opening of the South China Sea in 
the Cenozoic, as well as sea level changes and hinterland 
uplift resulted in significant changes in depositional envi-
ronments, input of clastic material and drainage into the 
basins. In the offshore region of SE Vietnam (Fig. 1) are 
the prolific Cuu Long (CLB) and Nam Con Son (NCSB) 
basins, which are the subject of this sediment provenance 
study.

Provenance studies in recent years around the South 
China Sea in NW Borneo, the Malay–Thai Peninsula, the 
Pearl River Basin in SE China, Palawan and the Philip-
pines have revealed paleo-river courses, source areas for 
basin fills and helped to reconstruct tectonic evolution 
(e.g., Sevastjanova et al. 2011; van Hattum et al. 2013; 
Suggate et al. 2014; Liu et al. 2016; Galin et al. 2017; 
Basori et al. 2018; Breitfeld and Hall 2018; Wang et al. 
2018; Yan et al. 2018; Dodd et al. 2019; Hennig-Breit-
feld et al. 2019; Breitfeld et al. 2020a; Tang et al. 2020; 
Burley et al. 2021; Gong et al. 2021; Quek et al. 2021). 

The Yinggehai–Song Hong Basin in the Gulf of Tonkin 
(Fig. 1) has so far provided the most detailed provenance 
data from offshore Vietnam (e.g., Wang et al. 2014, 2019; 
Cao et al. 2015; Jiang et al. 2015; Fyhn et al. 2019). How-
ever, up to now the offshore region of SE Vietnam has 
been little studied due to limited sample availability, with 
the exception of preliminary provenance data from the Cuu 
Long Basin (Hennig et al. 2017a).

The Cuu Long and Nam Con Son basins are close to the 
SE Vietnam coast and the present-day Mekong River sup-
plies sediment to the southern Cuu Long Basin (Fig. 1). The 
Mekong is the sixth longest river in Asia (Liu et al. 2009) 
and is very important for agriculture, climate and human 
development. Provenance studies of Cenozoic successions 
can help to understand the evolution of the Mekong River 
system by identifying the history of sediment deposition, 
uplift of source regions, changes of river courses, and pro-
vide insights into causes, such as tectonics and climate 
change. The objective of this study was to investigate the 
provenance of Oligocene to Late Miocene clastic sedimen-
tary rocks offshore SE Vietnam to reconstruct the drain-
age history of major rivers in Indochina. We present here 
new heavy mineral data and detrital zircon geochronology 
based on samples from wells in the Cuu Long and Nam Con 

Fig. 1   Location of major 
Cenozoic sedimentary basins 
in the South China Sea region 
(modified from Clift et al. 2006; 
Hennig et al. 2018). The study 
area includes the Cuu Long and 
Nam Con Son basins (orange 
coloured) offshore SE Vietnam. 
Other important SCS basins 
coloured in yellow. The Da Lat 
Zone in SE Vietnam (Creta-
ceous granitoids) is coloured in 
dark grey as important proximal 
source region
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Son basins to analyse river course and provenance changes. 
These are the first provenance data from these two basins. 
The results demonstrate that there is a major provenance 
change in the Cuu Long Basin in the Early Miocene from a 
proximal Da Lat Zone source to a wider Indochina source, 
which we interpret as reflecting the evolution of the proto-
Mekong River. At around the same time in the Nam Con 
Son Basin there was a change from an Indochina to an Indo-
china–Sibumasu source, indicating a change in hinterland 
supply and drainage.

Regional background

The Sunda Shelf region includes several Cenozoic sedimen-
tary basins that began to extend in the Late Eocene (Hall and 
Morley 2004). Rifting along the Sunda Shelf mostly ceased 
or paused when oceanic spreading began in the South China 
Sea at the Eocene–Oligocene boundary (Barckhausen et al. 
2014; Larsen et al. 2018; Zhong et al. 2018), which contin-
ued until c. 15 or 16 Ma (Chang et al. 2015; Yu et al. 2018; 
Zhang et al. 2018; Zhong et al. 2018). Franke et al. (2014) 

identified two important unconformities in the South China 
Sea margins, the rift-onset unconformity and the end-rift or 
break-up unconformity with diachronous character and Pale-
ocene to Eocene and Oligocene ages, respectively. The Cuu 
Long and Nam Con Son basins are two NE–SW trending 
basins in offshore SE Vietnam that are separated by the Con 
Son Swell. The basins contain Late Eocene/Oligocene to 
Miocene sediments that were deposited in fluvial to marine 
environments, which have been documented by 2D/3D seis-
mic, wireline logs, biostratigraphy, palynology, and core 
petrography (e.g., Nguyen and Nguyen 1995; Matthews et al. 
1997; Dien et al. 1998; Lee et al. 2001; Morley et al. 2011, 
2019; Dung et al. 2018). These sediments were deposited 
above Mesozoic meta-sedimentary, metamorphic and igne-
ous rocks that form the basement (e.g., Matthews et al. 1997; 
Cuong and Warren 2009). Figure 2 displays the Cenozoic 
stratigraphy of onshore and offshore SE Vietnam. Despite 
their close spatial relationship and similar sediment fill, the 
basins differ in their structure and evolution (e.g., Lee et al. 
2001; Schmidt et al. 2019). Onshore, the Da Lat Zone in SE 
Vietnam consists predominantly of Cretaceous granitoids 
intruded into Triassic and Jurassic meta-sedimentary and 

Fig. 2   Stratigraphic overview 
of the offshore successions in 
the Cuu Long and Nam Con 
Son basins and their time 
equivalents in onshore southern 
Vietnam (modified from Hennig 
et al. 2018). Letters in the CLB 
and NCSB represent the seismic 
horizons
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Triassic igneous rocks (Nguyen et al. 2004; Fyhn et al. 2010; 
Shellnutt et al. 2013; Hennig-Breitfeld et al. 2021; Schmidt 
et al. 2021). This Cretaceous granitic belt extends into SW 
Vietnam and SE Cambodia (Fyhn et al. 2016; Nong et al. 
2021; Waight et al. 2021) and across the Sunda Shelf into 
Borneo (Hennig et al. 2017b; Breitfeld et al. 2017, 2020b). 
The Cretaceous granites and volcanics in the Da Lat Zone 
are overlain by mainly fluvial to marginal marine Cenozoic 
sediments (Fig. 2). Hennig et al. (2018) presented heavy 
mineral and detrital zircon age provenance data for the Di 
Linh, Ba Mieu and Song Luy formations in the Da Lat Zone, 
which were probably largely eroded in the Pleistocene to 
Quaternary.

The Cuu Long Basin formed in the Cenozoic and is filled 
with c. 6 to 10 km of sediments (Lee et al. 2001; Cuong and 
Warren 2009; Fyhn et al. 2009; Schmidt et al. 2019) and 
has a history which includes rifting, inversion/compression, 
and thermal subsidence. Rifting initiated in the Eocene and 
continued until the end of the Oligocene (Lee et al. 2001; 
Schmidt et al. 2003; Hung and Le 2004; Fyhn et al. 2009) or 
the Early Miocene (Cuong and Warren 2009). Nguyen et al. 
(2019) documented two rift periods, a main phase from the 
Middle Eocene to the Oligocene and a late phase in the Early 
Miocene. This was followed by an episode of compression 
in the late Oligocene to Early Miocene (Schmidt et al. 2003, 
2019; Hung and Le 2004; Cuong and Warren 2009; Fyhn 
et al. 2009). Schmidt et al. (2019) suggested rifting ceased 
in the mid-Oligocene, followed by inversion in the late Oli-
gocene. The last stage of basin evolution is interpreted as 
a thermal sag phase beginning in the Early Miocene (Lee 
et al. 2001; Fyhn et al. 2009) or Middle Miocene (Cuong 
and Warren 2009; Nguyen et al. 2019). Schmidt et al. (2019) 
noted that none of the faults in the Mekong Delta Fault Zone 
or in the Cuu Long Basin cut significantly into the adjacent 
Con Son Swell or into the Nam Con Son Basin.

The Nam Con Son Basin is a Cenozoic rift basin that has 
been interpreted to be directly associated with the rifting and 
seafloor spreading of the South China Sea (East Vietnam 
Sea in Vietnamese literature) (Briais et al. 1993; Fyhn et al. 
2009; Franke et al. 2014), although the South China Sea 
extension estimates of Hayes and Nissen (2005) cast doubt 
on how much influence spreading had on the SE Vietnam 
basins. Rifting of the Nam Con Son Basin started at c. 32 Ma 
(Swiecicki and Maynard 2009), later than many other basins 
across the Sunda region, where an earlier Eocene rift phase 
is commonly identified (Morley et al. 2011). Four principal 
megasequences based on tectonic stages of the Nam Con 
Son Basin have been identified and include syn-rift 1, inter-
rift or post-rift 1, syn-rift 2 and post-rift 2 (Matthews et al. 
1997; Lee et al. 2001; Morley et al. 2011; Meyer 2012; Tuan 
and Tri 2016; Dung et al. 2018). The megasequences are fur-
ther subdivided into sequence stratigraphic third-order depo-
sitional sequences (T10 to Q100) that are correlated with 

lithostratigraphic units. The syn-rift 1 consists of sequence 
T10 deposited in the early Oligocene (Morley et al. 2011), 
possibly ranging down into the Late Eocene (Matthews et al. 
1997; Dung et al. 2018). Inter-rift consists of T20 and T30 
associated with regional subsidence possible in response to 
opening of the South China Sea. Syn-rift phase 2 includes 
sequences T40, T50, T60 and T65. This phase was followed 
by a regional uplift event in the Middle Miocene associated 
with major erosion, resulting in a regional Middle Miocene 
Unconformity (Matthews et al. 1997; Lee et al. 2001; Fyhn 
et al. 2009; Swiecicki and Maynard 2009; Morley et al. 
2011; Tuan and Tri 2016; Dung et al. 2018). Following the 
inversion widespread subsidence resulted in deposition of 
post-rift 2 sequences T85 to Q100, which includes Plio-
Pleistocene delta sediments that were interpreted as the pro-
grading paleo-Mekong delta (Matthews et al. 1997; Morley 
et al. 2011; Tuan and Tri 2016).

Cuu Long Basin stratigraphy

The stratigraphy of the Cuu Long Basin is subdivided by 
seismic horizons labelled from Group F/G at the base to A 
at the top (e.g., Dien et al. 1998; Hung and Le 2004) (Fig. 3). 
The basement of the basin is predominantly formed by Cre-
taceous granites, with minor Late Triassic and Late Jurassic 
igneous rocks (Cuong and Warren 2009). Hennig-Breitfeld 
et al. (2021) reported a U–Pb zircon age of c. 90–92 Ma for 
the Cretaceous granite basement and concluded that it was 
the equivalent of the onshore Da Lat Zone Deo Ca Suite 
granites. The Bach Ho granite within the basin was dated 
by Nong et al. (2021) with zircon U–Pb as c. 110 Ma, more 
similar in age to the onshore Dinh Quan suite (Hennig-Bre-
itfeld et al. 2021). The Con Dao Island granite southwest of 
the Cuu Long Basin was dated by Nong et al. (2021) as c. 
83 Ma, similar to the onshore Ankroet suite (Hennig-Breit-
feld et al. 2021). This suggests that the Cretaceous basement 
of the Cuu Long Basin is formed by different Cretaceous 
granitoids similar to the onshore Da Lat Zone. The sedi-
mentary successions of the Cuu Long Basin begin locally 
with the Eocene Ca Coi Formation (seismic groups F and 
G) and the more widespread Late Eocene to early Oligocene 
Tra Cu Formation (seismic group E) (Hung and Le 2004; 
San et al. 2013; Quang 2013; Morley et al. 2019). These 
formations consist of alluvial, fluvial and lacustrine fine to 
coarse grained sandstones interbedded with conglomerates, 
and siltstones, minor mudstones and thin coals (Cuong and 
Warren 2009; Morley et al. 2019). They are unconformably 
overlain by the Tra Tan Formation (seismic groups C and D) 
(Morley et al. 2019). Depositional environments range from 
fluvial and lacustrine to brackish and intertidal with some 
interbedded volcaniclastics (Hung and Le 2004; Cuong and 
Warren 2009; San et al. 2013; Morley et al. 2019). An early 
Oligocene age is interpreted for the formation by Morley 
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et al. (2019) in contrast to the previous Oligocene or late Oli-
gocene interpretation (e.g., Cuong and Warren 2009). The 
formation is subdivided into Lower (seismic group D) and 
Upper (seismic group C) parts separated by an unconform-
ity (Morley et al. 2019). The Bach Ho Formation (seismic 
group BI.1 and BI.2) unconformably overlies the Tra Tan 
Formation and consists mainly of shallow marine shales and 
sands, and some mudstones with strong deltaic and fluvial 
influence (Cuong and Warren 2009; Morley et al. 2019). The 
formation was interpreted to be Early Miocene (e.g., Cuong 
and Warren 2009), but Morley et al. (2019) revised the age 

to mainly late Oligocene for the Lower Member (BI.1) and 
Early Miocene for the Upper Member (BI.2) based on the 
occurrence of a Rotalia shale with common Ammonia spp. 
in the upper part. An unconformity is interpreted between 
the two members at the Oligocene–Miocene boundary (Mor-
ley et al. 2019). The Middle Miocene Con Son Formation 
(seismic group BII) unconformably overlies the Bach Ho 
Formation and is dominated by coastal to fluvial deposits 
and interpreted (Cuong and Warren 2009; Morley et al. 
2019). Unconformably on top is the Late Miocene Dong Nai 
Formation (seismic group BIII), which consists of shallow 

Fig. 3   Stratigraphy of the Cuu 
Long Basin with depositional 
environments, tectonic phases, 
and provenance signature 
(modified from Tran and Phung 
2007; Morley et al. 2019; 
Schmidt et al. 2019), display-
ing schematically the sample 
positions (red dots). Seismic 
sequences D to BIII (Tra Tan 
Formation to Dong Nai Forma-
tion) were analysed in this study
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marine, river mouth and coastal deposits (Cuong and War-
ren 2009; Morley et al. 2019). The youngest formation is 
the Pliocene to Quaternary Bien Dong Formation (seismic 
group A), which is dominated by open marine fine-grained 
sediments deposited in a shelfal environment (Cuong and 
Warren 2009).

Nam Con Son Basin stratigraphy

The Nam Con Son Basin is subdivided into seismic 
sequences labelled from T10 (Late Eocene to early Oli-
gocene) to Q100 (Pleistocene) corresponding to various 
lithostratigraphic units (Fig. 4) (Matthews et al. 1997). Based 
on the seismic sequences, Morley et al. (2011) introduced 
sequence biostratigraphy cycles VIM (Vietnam/Indonesia/
Malaysia) and revised the ages for the corresponding forma-
tions. Therefore, the seismic sequences of Matthews et al. 
(1997) do not correspond exactly to the lithostratigraphic 
formations (Morley et al. 2011). The basement is formed 
by granitic, volcanic and metasedimentary rocks (Matthews 
et al. 1997), from which volcanic rocks have been dated by 
zircon U–Pb as 200.4 ± 1.6 Ma (Hennig-Breitfeld et al. 
2021). Cretaceous granitoids have also been reported by the 
K-Ar method (Hutchison 1989; Areshev et al. 1992). Above 
the basement T10 and VIM10 forms the first sedimentary 
package consisting of alluvial fan/fluvial to lacustrine depos-
its, and is assumed to be Late Eocene to early Oligocene 
(Matthews et al. 1997; Morley et al. 2011; Dung et al. 2018). 
The T10 sequence has not been penetrated anywhere in the 
basin, and its age must be inferred from the overlying T20 
sequence. The T10 seismic sequence corresponds to the 
Tien Cau Formation (Morley et al. 2011). T20 and VIM20 
is dominated by fluvial sandstones overlain by coals, mud-
stones and thinner sandstone packages and interpreted as 
backstepping fluvio-deltaic facies with minimal tidal influ-
ence (Matthews et al. 1997; Morley et al. 2011). VIM20 
corresponds to the Cau Formation and is dated as late Oli-
gocene (Bat et al. 1993; Matthews et al. 1997). Nguyen and 
Nguyen (1995) report a thickness of 200 to 800 m for the 
Cau Formation. T30 and VIM30 unconformably above are 
interpreted as late Oligocene to Early Miocene transgressive 
sandstones and marine mudstones overlain by interbedded 
sandstones and mudstones (Matthews et al. 1997; Morley 
et al. 2011; Dung et al. 2018). They are fluvial, estuarine and 
brackish shoreface deposits with occasional intercalations of 

more open marine sediments (Matthews et al. 1997). T30 
and VIM30 correspond to the Dua Formation (Bat et al. 
1993; Nguyen and Nguyen 1995; Matthews et al. 1997; 
Morley et al. 2011). Nguyen and Nguyen (1995) report a 
thickness from 200 m to over 1000 m. Tham and Su (2016) 
reported Early Miocene calcareous nannofossils (zones NN2 
to NN4). Seismic sequence T40 and VIM40 is interpreted to 
be unconformably above with a shift from the predominantly 
paralic facies of T30 to shelfal marine clastic sediments and 
carbonates of T40 (Matthews et al. 1997). The sequences 
correspond to the Thong Formation and are dated as late 
Early Miocene to early Middle Miocene (Bat et al. 1993; 
Matthews et al. 1997; Morley et al. 2011; Dung et al. 2018). 
The Thong Formation also includes seismic sequence T50 
(Dung et al. 2018). The Middle Miocene T60 and T65 are 
dominated by shelfal sediments and deep water clastic sedi-
ments (Matthews et al. 1997). They correspond to the Mang 
Cau Formation (Bat et al. 1993; Nguyen and Nguyen 1995; 
Matthews et al. 1997; Dung et al. 2018), and to cycle VIM50 
(Morley et al. 2011). The top of the sequence is a prominent 
unconformity marking a basinward shift of deep water sedi-
mentation and mild inversion of the underlying successions 
(Matthews et al. 1997). T80 and T85 are unconformably 
above T65 and comprise Late Miocene deposits (Matthews 
et al. 1997). They correspond broadly with the VIM70 cycle 
(Morley et al. 2011). The lower part (T80) is dominated by 
widespread shelf carbonates with restricted shallow water 
clastics and deep water mudstones between the build-ups 
(Matthews et al. 1997). The upper part (T85) is composed of 
shelf and slope clastic deposits with some restricted carbon-
ate facies, and turbidite facies (Matthews et al. 1997). The 
Nam Con Son Formation is the lithostratigraphic equiva-
lent (Bat et al. 1993; Matthews et al. 1997). Sequences T90, 
T100 and Q100 correspond to the Bien Dong Formation 
and broadly to VIM cycles 80, 90 and 100, and range from 
the Early Pliocene to the Pleistocene with mostly shelfal, 
slope and deep water deposits (Bat et al. 1993; Matthews 
et al. 1997; Morley et al. 2011; Dung et al. 2018) and delta 
deposits (Morley et al. 2011).

Methodology

Sampling

Samples were provided from wells in the Cuu Long and 
Nam Con Son basins by Talisman Vietnam (now Repsol 
Vietnam) in cooperation with the Vietnam Petroleum Insti-
tute (VPI). One well from the Cuu Long Basin was analysed 
using six cuttings samples from various stratigraphic levels 
(Fig. 3). The Nam Con Son Basin was analysed in three 
wells (NCSa, NCSb, NCSc) covering Oligocene to Mio-
cene stratigraphic intervals (Fig. 4). Three cuttings samples 

Fig. 4   Stratigraphy of the Nam Con Son Basin with depositional 
environments, tectonic phases, and provenance signature (modified 
from Dung et al. 2018). Seismic sequences T20 to T40&50 (Cau to 
Thong Formation) were analysed in this study. Display of the three 
analysed wells (NCSa, NCSb and NCSc) and position of the samples 
is only schematically. Red dots include heavy mineral and detrital zir-
con geochronology samples. Grey dots comprise biostratigraphy sam-
ples

◂
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were analysed from well NCSa, five cuttings samples from 
well NCSb, and two core samples from NCSc. A sample 
list overview with analysis undertaken can be found in Sup-
plementary Table 1.

Biostratigraphy

Covered thin sections were prepared for calcareous mud-
stones of 16 cuttings samples of the Nam Con Son Basin 
(wells NCSa and NCSb) and two cuttings samples of the 
Cuu Long Basin, and analysed for biostratigraphy, follow-
ing the approach described in BouDagher-Fadel (2015, 
2018a). This primarily uses the Planktonic Zonation 
scheme (PZ) of BouDagher-Fadel (2018b), which is tied 
to the biostratigraphical and the radioisotope time scales 
(as defined by Gradstein et al. 2012 and revised by Cohen 
et al. 2013).

Heavy mineral separation and analysis

Sample preparation for heavy mineral analyses and zircon 
enrichment was carried out at Royal Holloway University 
of London. The friable cuttings and core samples were 
processed by mortar and pestle, washed and sieved into a 
63–250 μm fraction. Heavy minerals were separated using 
standard heavy liquid lithium heteropolytungstate at a den-
sity of 2.89 g/cm3, using the technique outlined in Mange 
and Maurer (1992).

Heavy mineral analysis was performed primarily on pol-
ished epoxy resin blocks with QEMSCAN by Rocktype with 
QEMSCAN 10 measurement method that has a resolution of 
10 μm. Additional samples from the Cuu Long Basin were 
analysed with EDS–SEM at the Royal Holloway University 
of London after the methodology outlined in Hennig-Bre-
itfeld et al. (2019) and Breitfeld et al. (2020a), and Raman 
spectroscopy (e.g., Andò et al. 2009; Andò and Garzanti, 
2014) was conducted on samples from both basins at Chem-
ostrat Ltd. on a Horiba XploRa Raman with a 532 µm laser. 
Acquired spectra were compared to the RRUFF database 
(Lafuente et al. 2016) and an internal Chemostrat Ltd. data-
base. Dunkl et al. (2020) demonstrated that electron beam-
based methods such as QEMSCAN yield overall results that 
are comparable to Raman analysis, especially if the heavy 
mineral assemblage does not contain high proportions of 
polymorphs (which are not resolvable with electron beam 
methods) and chain silicates (which are difficult to discrimi-
nate with electron beam methods). Supplementary Table 1 
displays which method was used for each sample. QEM-
SCAN results yielded the highest count numbers.

Baryte removal technique

A few cuttings samples contained abundant heavy minerals 
baryte or anhydrite. Baryte is indicative of drilling mud con-
tamination and anhydrite may also be a drilling additive or 
be diagenetic. Both minerals can flood and dilute the heavy 
mineral assemblage and a method to remove the two phases 
was employed.

Baryte and to a lesser extent anhydrite grains were 
removed from heavy mineral separates through selective pul-
verisation using a standard dental amalgamator and acrylic 
balls. The vibration of the dental amalgamator and the 
acrylic balls pulverises softer minerals, leaving only more 
resistant minerals because of the low hardness of baryte and 
anhydrite (Mohs scale 3 to 3.5) compared to other heavy 
minerals. This method was adapted and modified from the 
procedure described by the Arizona Laserchron Center at the 
University of Arizona (listed as Processing Samples (Min 
Sep): WIG-L-BUG removal of softer materials) at: https://​
sites.​google.​com/​laser​chron.​org/​arizo​nalas​erchr​oncen​ter/​
home.

The heavy mineral separates and the acrylic balls of 
1/8 mm size were placed into a stainless-steel capsule, 
which were securely placed onto the dental amalgamator 
for a short period of time (up to one minute). The vibra-
tion of the amalgamator destroyed the targeted soft miner-
als. The modified heavy mineral separates were rinsed using 
isopropanol through a 20 µm sieve. The isopropanol and 
pulverised baryte mixture created a ``milky’’ mixture. The 
remaining hard minerals were washed with a small amount 
of acetone under a fume hood and subsequently examined 
under the microscope. If the resulting mixture was not milky 
or there were still large amounts of baryte visible under the 
microscope, the process was repeated. Heavy mineral sepa-
rates were split before employing the method and analysed 
separately to assess the success of the method, but also to 
assess the effect on other heavy mineral grains.

LA–ICP–MS zircon geochronology

For zircon concentration the separates were further pro-
cessed with a Frantz magnetic barrier separator and 
immersed into di-iodomethane at 3.3 g/cm3 to maximise the 
purity of the zircon separates. Zircon grains were imaged in 
transmitted light to detect cracks or inclusions and cathodo-
luminescence imaging was performed to identify zoning 
prior selection of analysis spots for the laser ablation induc-
tively coupled plasma mass spectrometry (LA–ICP–MS).

The methodology used follows the detrital zircon geo-
chronology analysis scheme described in Breitfeld et al. 
(2020a). U–Pb LA–ICP–MS analysis was performed at Birk-
beck College, University of London with a New Wave NWR 
193 nm laser ablation system coupled to an Agilent 7700 

https://sites.google.com/laserchron.org/arizonalaserchroncenter/home
https://sites.google.com/laserchron.org/arizonalaserchroncenter/home
https://sites.google.com/laserchron.org/arizonalaserchroncenter/home
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quadrupole-based plasma ICP–MS with a two-cell sample 
chamber. A spot size of 25 μm was used for the ablation. 
The Plešovice zircon standard (337.13 ± 0.37 Ma; Sláma 
et al. 2008) and a NIST 612 silicate glass bead (Pearce et al. 
1997) were used to correct for instrumental mass bias and 
depth-dependent inter-element fractionation of Pb, Th and 
U. Data reduction was achieved with the GLITTER software 
(Griffin et al. 2008). The data were corrected using the com-
mon lead correction method of Andersen (2002), which is 
used as a 204Pb common lead-independent procedure. Sup-
plementary Table 2 displays results of measured Plešovice 
zircons (weighted mean age: 337.11 ± 0.32 Ma, n = 159, 
MSWD = 0.08). IsoplotR (Vermeesch 2018) was used for 
calculation and illustration of zircon standard results (Sup-
plementary Fig. 1).

For grains older than 1000 Ma the age was that obtained 
from the 207Pb/206Pb ratio. For ages younger than 1000 Ma, 
the ages from the 238U/206Pb ratio were used, because 207Pb 
cannot be measured with sufficient precision, resulting in 
large analytical errors (Nemchin and Cawood 2005). Con-
cordance was tested using a 10% threshold between the 
207Pb/206Pb and 206Pb/238U ages for ages greater than 1 Ga 
and between the 207Pb/235U and 206Pb/238U ages for ages 
below 1 Ga. Age histograms and probability density plots 
were created using an R script that adopts the approach of 
Sircombe (2004) for calculating probability density. A few 
cores and rims were observed in CL images, and both sites 
were analysed following the approach by Zimmermann 
et al. (2018) to detect all age peaks, which is important for 
provenance studies. Analytical results are presented in Sup-
plementary Table 3 for Cuu Long Basin and Supplemen-
tary Table 4 for Nam Con Son Basin. CL images with laser 
ablation spots of all zircons can be found in Supplementary 
Fig. 2. For a simple illustration of the detrital zircon data 
we use a Multi-Dimensional Scaling (MDS) plot for detrital 
zircon age distributions (Vermeesch 2013). The MDS plot is 
based on a dissimilarity matrix between pairwise samples, 
using here the two-sample Kuiper distance test, and gener-
ated with the R provenance package by Vermeesch et al. 
(2016).

Results

Biostratigraphy

The Cuu Long Basin samples are dominated by clastic sedi-
ments with strong fluvial or deltaic influence and only very 
rare non-age diagnostic foraminifera were observed. Samples 
from the Nam Con Son Basin yielded foraminifera which 
enable high resolution biostratigraphy for the Dua Forma-
tion (T30) and the Thong Formation (T40&50). The lower-
most analysed succession, the Cau Formation, did not yield 

age-diagnostic foraminifera. The Dua Formation is dated 
as Early Miocene with the lower part having a foraminifera 
assemblage belonging to the Planktonic Foraminiferal zones 
N5 to N6 (presence of Catapsydrax stainforthii and Cata-
psydrax dissimilis) with an age of 21.0 to 17.2 Ma. Frag-
ments of upper Oligocene to lower Miocene reefal larger 
benthic foraminifera (Lepidocyclina sp.) are reworked into 
this inner neritic foraminiferal assemblage. The uppermost 
sample (NCSa-2) belongs to zone N7 (based on the presence 
of Globorotalia miozea and Globigerina connecta) with 
an age of 17.2 to 17.0 Ma (Table 1). The overlying Thong 
Formation samples yielded a Langhian foraminifera assem-
blage diagnostic for Planktonic Foraminiferal zone N8b–N9a 
(presence of Praeorbulina glomerosa) with an age of 15.4 
to 14.5 Ma (Table 1). This suggests a short hiatus between 
the two formations as zone N8a was not observed. Relative 
stratigraphic position of Nam Con Son Basin samples with 
age diagnostic foraminifera is displayed in Fig. 4. Assorted 
and index foraminifera photomicrographs from the Nam Con 
Son Basin samples are displayed in Fig. 5.

U–(Th)–Pb zircon geochronology

All of the samples analysed yielded zircons significantly 
older than the depositional ages, and therefore, no age 
estimate for the formations can be made from the detrital 
zircons.

Cuu Long Basin

Tra Tan Formation (D)

Sample CLB9.1 from the lower part of the Tra Tan Forma-
tion was analysed and 128 concordant U–Pb zircon ages 
were acquired from 134 zircons. CL imagery revealed 
predominantly oscillatory zoned or sector zoned euhedral 
zircons. No obvious core–rim structures were observed. A 
single grain had a core of 272 ± 5 Ma and with a slightly 
younger age of 257 ± 6 Ma from edge of the grain. The sam-
ple is dominated by Cretaceous zircons, which form about 
87% (111 out of 128) of the zircon assemblage (Fig. 6). Cre-
taceous ages range from c. 70 to 122 Ma with a dominant 
narrow peak between 90 and 100 Ma. There are 16 ages 
that scatter from the Early Jurassic to the Devonian, with 
a small Permian population (11 ages). The oldest grain is 
1758 ± 22 Ma and the youngest is 70 ± 1 Ma.

Lower Bach Ho Formation (BI.1)

Sample CLB6.1 from the Lower Bach Ho Formation was 
analysed and 135 detrital zircon grains yielded 131 con-
cordant ages. Zircons are generally oscillatory zoned, 
and no core–rim structures were observed. The sample 
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Fig. 5   Plate of representative foraminifera of the Nam Con Son sam-
ples. 1—Praeorbulina glomerosa (Blow), NCSb-3. Thong Forma-
tion. 2—Catapsydrax dissimilis (Cushman and Bermudez), NCSb-3. 
Thong Formation. 3—Praeorbulina transitoria (Blow), NCSa-1. 
Thong Formation. 4—Dentoglobigerina altispira (Cushman and 
Jarvis), NCSa-1. Thong Formation. 5—Globorotalia miozea Finlay, 

NCSa-2. Dua Formation. 6—Globigerina connecta Jenkins, NCSa-2. 
Dua Formation. 7—Globorotalia mayeri Cushman and Elisor, NCSa-
2. Dua Formation. 8—Globigerina praebulloides Blow, NCSa-4. 
Dua Formation. 9—Catapsydrax stainforthi Blow, Loeblich and Tap-
pan, NCSa-6. Dua Formation. Scale bars on photomicrographs 1 – 
9 = 0.2 mm
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is dominated by Cretaceous zircons which form about c. 
82% (107 out of 131) of the assemblage (Fig. 6). The Cre-
taceous ages range from c. 75 to 116 Ma similar to CLB9.1 
with a dominant peak between 80 and 100 Ma. The only 
other Phanerozoic age population is 23 Permian–Triassic 
ages. There are two Precambrian ages, one each in the 
Neoproterozoic and Paleoproterozoic. The oldest age is 
1856 ± 19 Ma (Paleoproterozoic) and the youngest grain 
is 74.6 ± 0.8 Ma (Cretaceous).

Upper Bach Ho Formation (BI.2)

Sample CLB4.1 from the Upper Bach Ho Formation 
was analysed and 124 concordant ages were acquired 
from 128 zircon grains. Zircons show oscillatory zoned 
internal structures. Like the underlying Lower Bach Ho 
samples, the Upper Bach Ho zircons are predominantly 
Cretaceous which form about 84% (104 out of 124) of the 
assemblage (Fig. 6). The Cretaceous zircon ages range 
from c. 74 to 145 Ma with a major peak between 90 to 
110 Ma, and there are significant populations between 80 
to 90 and around c. 125 Ma. The analysed sample contains 
two Jurassic zircons and 17 Permian–Triassic zircons. 
The sample has only a single grain older than Permian at 
2538 ± 9 Ma. The youngest age is 73.8 ± 1 Ma.

Con Son Formation (BII)

Samples CLB2.1 and CLB2.3 from the Con Son Forma-
tion were analysed. The two samples have similar zircon 
age populations and are displayed together as CLB2_1–3. 
188 concordant ages were acquired from 193 zircon grains. 
Zircon grains are predominantly sector zoned or show 
oscillatory zoning. In contrast to the underlying samples, 
a number of rounded dark zircons were observed. A single 
Neoproterozoic grain showed core–rim structures with a 
core of 914 ± 11 Ma and a rim of 636 ± 8 Ma. No other 
core–rim structures were observed. 188 concordant ages 
were acquired from 193 zircon grains. In contrast to the 
underlying formations that are almost entirely composed 
of Cretaceous zircons, the Con Son samples are dominated 
by Triassic zircons and other heterogeneous age popula-
tions (Fig. 6). 32% (60 out of 188) ages are Triassic with 
the majority being between 220 to 230 Ma and a small 
Permian tail that goes up to c. 280 Ma. The second most 
prominent age population is Cretaceous with c. 14% of 
ages (26 out of 188). The Cretaceous population ranges 
from c. 80 to 140 Ma, and most ages are between c. 90 
and 120 Ma. Other Phanerozoic age populations are Juras-
sic and other ages scattered throughout the Palaeozoic of 
which Silurian–Ordovician ages are the most common. 

52 ages are Precambrian and there are populations at c. 
700–800 Ma, 1.2 Ga, between 1.8 and 1.9 Ga, which forms 
the most significant population, and at c. 2.5 Ga. There 
are three zircon ages at c. 2.8 Ga with the oldest being 
2764 ± 8 Ma. The youngest zircon was found in sample 
CLB2.1 and is 78 ± 2 Ma.

Dong Nai Formation (BIII)

Sample CLB1.1 from the Dong Nai Formation yielded 129 
concordant ages from 132 detrital zircons. CL imagery 
revealed predominantly patchy, zoned or sector zoned zir-
cons. An abundance of subrounded grains with dark CL 
was observed. Core–rim structures are very rare, and the 
one observed core yielded an age of 621 ± 7 Ma with a rim 
of 214 ± 2 Ma. The sample is dominated by Upper Trias-
sic zircons with a long tail of ages that range into the Late 
Carboniferous (Fig. 6). Triassic ages form c. 34% (44 out 
of 129) of the whole assemblage, with 26% of the whole 
assemblage being Late Triassic. Other zircon populations 
are Cretaceous with a Late Cretaceous peak between 90 
and 100 Ma, Ordovician–Silurian, and Precambrian. Those 
Precambrian zircons are dominated by a strong age peak 
between 1.8 and 1.9 Ga (Fig. 6). The only other signifi-
cant Precambrian age population lies between 700 and 
800 Ma. The oldest analysed zircon is 3541 ± 5 Ma. The 
youngest three zircons are Oligocene to Eocene in age and 
range from 35.1 to 50 Ma, but do not overlap in error and 
are significantly older than the depositional age. Similar 
young zircons were not observed in the other Cuu Long 
Basin samples.

Nam Con Son Basin

Cau Formation (T20)

The Cau Formation was analysed in three samples from 
cuttings (NCSa-7, NCSb-19, NCSb-23) and two samples 
from core (NCSc-1, NCSc-2). The combined age plot 
for the five samples is displayed in Fig. 7 as NCS-3. The 
three cuttings samples yielded only a very small number 
of zircons. In total 300 concordant ages were acquired 
from 310 zircons. Zircon shapes range from euhedral to 
rounded with the latter being more abundant. Euhedral 
grains often show rounded edges and are frequently oscil-
latory zoned, while rounded grains appear often dark grey 
or patchy zoned in CL. Core–rim structures were occasion-
ally observed. The Cau Formation contains predominantly 
Phanerozoic zircons (64%) with a major peak in the Trias-
sic that extends into the Permian. Cretaceous zircons form 
the second-most abundant Phanerozoic population. There 
are Jurassic, Silurian–Ordovician and Cambrian zircon 
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populations. The Precambrian zircons are dominated by 
Paleoproterozoic ages of 1.75 to 1.95 Ga which make up c. 
10.6% of the total age distribution. Scattered ages between 
c. 700 Ma and 1.2 Ga and a narrow Archean peak at c. 
2.5 Ga are other Precambrian populations. The oldest age 
of 2874 ± 9 Ma was from NCSc-1, and the youngest zircon 
was 72.9 ± 1 Ma from NCSc-2.

Dua Formation (T30)

The Dua Formation was analysed in samples NCSa-4, 
NCSb-10, and NCSb-13. All three samples show very simi-
lar detrital zircon age populations and are displayed together 
as NCS-2. 398 concordant ages were acquired from 403 zir-
con grains. Zircon grains are relatively similar to the Cau 
Formation in being dominated by dark grey CL rounded to 
sub-rounded varieties. The Dua Formation has two main 
zircon age populations, a Permo-Triassic population that 
forms a double peak in the Late Permian and early Late Tri-
assic and an older Paleoproterozoic age population around 
c. 1.8 to 1.9 Ga (Fig. 7). There are almost equal numbers of 
Phanerozoic (206) and Precambrian (192) zircons. Besides 
the Permo-Triassic age peak, other Phanerozoic grains are 
Cretaceous, Upper Jurassic and Ordovician–Silurian with 
some scattered ages between. The Precambrian has a very 
wide age population of c. 600 to 1150 Ma, a dominant peak 
at 1.8–1.9 Ga and a small peak at c. 2.5 Ga. The oldest age 
was 3693 ± 6 Ma in NCSa-4, and the youngest zircon was 
41.9 ± 0.5 Ma in NCSb-10.

Thong Formation (T40&50)

The Thong Formation was analysed in samples NCSa-1 and 
NCSb-1. Both samples show very similar zircon age popula-
tions and are displayed together as NCS-1. 164 concordant 
ages were acquired from 169 zircon grains. Zircons show 
predominantly homogenous or oscillatory zoning in CL 
imagery for euhedral grains, and dark CL for subrounded 
to rounded grains that dominate the assemblage. Dark areas 
were usually associated with Precambrian ages. Like the 
underlying Dua Formation, the Thong Formation is domi-
nated by Triassic zircon ages with a significant number of 
Precambrian zircons (Fig. 7). In contrast to the Dua Forma-
tion, the number of Permian and Cretaceous zircons is lower. 

The Triassic zircon population forms about 24% (40 out of 
164) of the assemblage. The only other significant Phan-
erozoic age populations are Permian (c. 5%) and Ordovi-
cian–Silurian (c. 7%). Only c. 3% of zircons are Cretaceous, 
and there are small numbers of Jurassic and Carboniferous 
grains. The number of Precambrian zircons (76) is almost 
as high as the number of Phanerozoic zircons (88). The 
Precambrian zircon ages form peaks at c. 900–1000 Ma, c. 
1.7–1.9 Ga, and c. 2.5 Ga with scattered ages between. In 
contrast to the underlying formations, 750 Ma to 1.2 Ga zir-
cons form the dominant Precambrian zircon age assemblage. 
The oldest age was 2785 ± 12 Ma in NCSb-1, and the young-
est zircon was 44.8 ± 0.6 Ma (also in NCSb-1).

Heavy mineral analysis

Heavy mineral results in this study were acquired using three 
different methods, which in general yielded very comparable 
results. EDS–SEM and QEMSCAN are electron beam meth-
ods which cannot differentiate between TiO2 polymorphs, 
whereas Raman spectroscopic analysis can differentiate 
between rutile, brookite and anatase. Raman results gen-
erally indicated slightly more total TiO2 polymorphs than 
the electron beam methods, which is likely a function of 
composite anatase grains that are below the threshold for 
identification by the electron beam methods, but still result 
in a strong anatase Raman shift signal. The proportion of 
TiO2 polymorphs is likely, therefore, slightly overestimated 
in the samples analysed by Raman spectroscopy compared 
to the EDS or QEMSCAN results. Nevertheless, results 
are consistent. For simplification, in this paper the three 
polymorphs rutile, brookite and anatase are listed as rutile. 
Other polymorphs (such as aluminosilicates) were not found. 
Baryte was discarded from the heavy mineral assemblage, 
because it was used as a drilling additive. Opaque miner-
als were also analysed, but due to identification uncertain-
ties using different methods as well as a possible diagenetic 
origin (e.g., pyrite) no provenance interpretation is given. 
Heavy mineral proportions are listed in Table 2 and count 
numbers are listed in Supplementary Table 5.

Cuu Long Basin

The heavy mineral assemblage of the Tran Tra Formation 
(D) sample CLB9.1 consists of abundant translucent heavy 
minerals which make about 87% of the total assemblage. 
Opaque minerals are subordinate, with pyrite (12.5% of the 
total heavy mineral assemblage) being the most abundant. 
The translucent heavy mineral assemblage is dominated by 
apatite (39.7%), rutile (26%) and zircon (22.7%) (Fig. 8A). 
The heavy mineral assemblage of the overlying Lower Bach 
Ho Formation sample (BI.1) CLB6.1 is also dominated 
by translucent heavy minerals which make c. 92% of the 

Fig. 6   Detrital zircon age histograms with probability density curves 
for the Cuu Long Basin samples in stratigraphic order. Samples from 
the Tra Tan (horizon D) and Bach Ho (horizons BI.1 and BI.2) are 
dominated by Cretaceous zircons. Unconformably on top are the Con 
Son (horizon BII) and Dong Nai (horizon BIII) formations, which 
display a heterogeneous detrital zircon age spectrum, dominated by 
Triassic ages. The Bach Ho Unconformity at c. 16 to 20.5 Ma marks 
the major provenance boundary. Bin size of 10 Ma for Phanerozoic 
ages and 50 Ma for Precambrian ages. X = number of samples

◂
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total heavy mineral assemblage. Opaque minerals (pyrite, 
ilmenite) are subordinate. The translucent heavy mineral 
assemblage (Fig. 8A) is dominated by epidote (43.5%), zir-
con (17.1%), rutile (13.6%), garnet (5.7%) and tourmaline 
(5.4%) with minor apatite (3%), titanite (1.8%), sphalerite, 
monazite and Cr-spinel (all traces only). The Upper Bach 
Ho Formation sample (BI.2) CLB4.1 has a very similar 
heavy mineral assemblage to the Lower Bach Ho Formation. 
Translucent heavy minerals form c. 61.5% of the assem-
blage with opaque minerals consisting of pyrite (67.9%), 

hematite (30.5%) and traces of ilmenite. Translucent heavy 
minerals are dominated by epidote (57.1%), rutile (17.6%), 
tourmaline (8.6%), apatite (7.1%), zircon (3.3%) and garnet 
(2.9%) (Fig. 8A). Fluorite, monazite, sphalerite and topaz 
are present in traces.

The Con Son Formation (BII) heavy mineral samples 
CLB2.1, CLB2.3 and the Dong Nai Formation (BIII) sample 
CLB1.1 show very similar heavy mineral proportions and 
record a major change from the underlying Bach Ho Forma-
tion. In contrast to the underlying two formations the heavy 

Fig. 7   Detrital zircon age histograms with probability density curves 
for the Nam Con Son Basin samples in stratigraphic order. Samples 
from the respective formations have been combined (X = number of 
samples). The Cau and Dua Formation samples display a heterogene-
ous zircon age distribution with characteristic peaks in the Permian–
Triassic, Cretaceous, Ordovician–Silurian and Paleoproterozoic (c. 
1.8  Ga). The Dua Formation has thereby significant more Precam-
brian ages as the Cau Formation, which may be related to unroof-

ing of a source area. The Cau Unconformity separates the two for-
mations. The Thong Formation above the Dua Formation shows an 
increase in 800 to 1000 Ma and c. 2.5 Ga zircons, typically for Sibu-
masu, suggesting a new river system supplying material. The Dua 
Unconformity marks the boundary at c. 15.4 to 17  Ma. Bin size of 
10 Ma for Phanerozoic ages and 50 Ma for Precambrian ages. Sup-
plementary Figure 3 displays the histograms for the individual NCSB 
samples
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mineral assemblages are dominated by opaque minerals. 
Pyrite makes up to 50% of the total heavy mineral assem-
blage and hematite (up to 21%) and ilmenite (up to c. 7%). 
Translucent heavy minerals form only around 40 to 54% of 
the total heavy mineral assemblage with rutile (up to 48.6%), 
apatite (9.7 to 21.1%), tourmaline (15.3 to 18.3%) and garnet 
(11.7 to 16.1%) being the most abundant (Fig. 8A). Zircon 
(up to 5.6%), monazite (up to 3.3%), pyroxene (up to 4.2%), 
epidote (up to 2.8%), amphibole (up to 2.3%) and Cr-spinel 
(up to 1.4%) are subordinate (Fig. 8A). Traces of xenotime, 
sphalerite, titanite and staurolite were also observed.

The Tra Tan Formation and the Bach Ho Formation 
samples show some similarities in relevant heavy mineral 
indices, despite the high amount of epidote in the Bach Ho 
Formation. The ZTi and CZi values and the moderate RZi 
are similar in the lower Bach Ho Formation and the Tra 
Tan Formation samples (Fig. 9A). The two samples differ 
in ZTR which decreases sharply in the Lower Bach Ho 
Formation as a result of abundant epidote, in GZi which 
increases as garnet increases and in ATi which decreases 

sharply as apatite decrease (Fig. 9A), thus indicating some 
source differences for the two formations. The Upper Bach 
Ho Formation sample (CLB4.1), despite its very similar 
heavy mineral proportions to the Lower Bach Ho sample 
(CLB6.1), has indices that indicate a change within the 
formation. Like the Lower Bach Ho Formation ZTR is low, 
ATi is moderate, and CZi is 0 (Fig. 9A). In contrast, GZi 
and RZi increase significantly and ZTi decreases, which 
is more similar to the overlying formations (Fig. 9A). Up 
section the heavy mineral indices show a major change 
between the Bach Ho Formation and the overlying Con 
Son and Dong Nai Formations. The ZTR values of the Con 
Son and Dong Nai Formation increases slightly from the 
underlying Bach Ho Formation as a result of the higher 
abundance of rutile and tourmaline (Fig. 9A). There is 
also an increase in RZi (up to 93) and a decrease of ZTi 
(down to 16) in the Upper Bach Ho Formation (Fig. 9A). 
In addition, there is a sharp increase in CZi (Fig. 9A), 
all supporting a significant source change at the base of 
the Con Son Formation, which may have started within 

Fig. 8   Heavy mineral assem-
blages of the studied intervals. 
A) Cuu Long Basin samples: 
The Tra Tan and Bach Ho For-
mation samples (D to BI.2) are 
dominated by unstable varieties, 
with D dominated by apatite 
and BI by epidote. The Bach Ho 
Unconformity marks a major 
change in heavy mineral assem-
blages. The overlying Con Son 
and Dong Nai formations (BII 
to BIII) are dominated by rutile, 
tourmaline, garnet and zircon. 
B) Nam Con Son Basin samples 
displayed per samples (upper 
panel) and per formation/seis-
mic sequence (lower panel). 
T20 (Cau) and T30 (Dua) are 
dominated by ultra-stable heavy 
minerals, especially rutile. The 
overlying T40&T50 (Thong) 
has characteristic higher apatite 
proportions
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the Upper Bach Ho Formation. The Dong Nai Formation 
shows a relatively similar heavy mineral assemblage with 
similar heavy mineral indices to the underlying Con Son 
Formation (Fig. 9A), suggesting no major source changes 
for the two formations. The ZTR-GZi bi-plot best displays 
the two different main assemblages observed in the CLB 
samples (Fig. 9C).

Nam Con Son Basin

Samples NCSa-7, NCSb-19 and NCSc-1 from the Cau For-
mation (T20) were analysed for heavy minerals. The heavy 
mineral assemblage is dominated by opaque minerals with 
up to 83% of the total heavy mineral assemblage; pyrite is 
the most abundant. Translucent heavy minerals form c. 17 
to 36% of the total assemblage and are dominated by rutile 
(48.4% to 70.6%), with zircon (up to 17.7%), tourmaline (up 
to 9.7%), garnet (up to 9.7%), apatite (up to 8.8%), monazite 
(up to 6.4%), Cr-spinel (up to 3.2%) and sphalerite (up to 
2%) (Fig. 8B). Samples NCSb-10, NCSb-13 and NCSa-4 
from the overlying Dua Formation (T30) are dominated by 
translucent heavy minerals which account for c. 90% of the 

total assemblage. The remaining c. 10% are opaque min-
erals of which pyrite is the most abundant with traces of 
hematite, ilmenite, magnetite and jacobsite. The translucent 
heavy minerals (Fig. 8B) are dominated by rutile (66.8% to 
83.3%), with zircon (5.7% to 16.4%), apatite (up to 5.5%), 
tourmaline (up to 8.9%) and garnet (up to 4.9%), and low 
proportions or traces of Cr-spinel, monazite, sphalerite, epi-
dote, amphibole, titanite and xenotime. The overlying Thong 
Formation (T40&50) is again dominated by opaque minerals 
with abundant pyrite (up to 89.7%) and traces of ilmenite. 
Translucent heavy minerals form between 10 and 29.1% of 
the total assemblage. Rutile (up to 47.8%), apatite (up to 
26.7%) and tourmaline (up to 20.1%) are the most abundant 
translucent heavy minerals (Fig. 8b). Zircon (up to 12.1%), 
sphalerite (5.2%), garnet (up to 5.1%), monazite (2.6%), Cr-
spinel (1.1%), titanite (0.7%) and epidote (0.4%) are present 
in lower proportions (Fig. 8B).

Translucent heavy minerals from the Nam Con Son Basin 
are generally dominated by ultra-stable minerals, indicated 
by the high ZTR values (up to c. 98%, Fig. 9B). The young-
est analysed unit, the Thong Formation, has the lowest ZTR 
values (c. 65 to 75%, Fig. 9B) due to the presence of less 
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stable heavy minerals, such as apatite and garnet (Fig. 8b). 
The other heavy mineral indices are very variable for the 
Nam Con Son Basin and are best displayed for formations 
and not individual samples (Fig. 9B) so that trends can be 
better established. The ATi ratio decreases from the Cau 
(T20) to the Dua Formation (T30), before increasing in the 
Thong Formation (T40&50) (Fig. 9B). At the same time the 
ZTi remains relatively stable and high in the Cau and Dua 
Formations, before sharply dropping at the top Dua sam-
ple and remaining low in the Thong Formation (Fig. 9B). 
A higher input of garnet in the Thong Formation is indi-
cated by the GZi values of c. 30 (Fig. 9B), higher than in 
the underlying Dua Formation. The Cau and Dua Formation 
samples have also ZTi values generally higher than in the 
overlying Thong Formation. Using ZTR and GZi indices, 
the three formations are relatively well separated (Fig. 9C).

Effect of baryte removal

Samples CLB2.1, CLB2.3 and NCSb-19 were subjected 
to the baryte removal technique (Supplementary Table 6). 
CLB2.1 was analysed in two separates with QEMSCAN. 
One separate was untreated and the other was treated 
to remove baryte. 540 translucent heavy mineral grains 
(excluding carbonates) were identified in the untreated sam-
ple with baryte forming 53.7% of the assemblage (Fig. 10A). 
The treated sample yielded 799 translucent heavy mineral 
grains with the proportion of baryte decreasing to 20.2% 
(Fig. 10A). The results from the two separates, after exclud-
ing baryte, are almost identical (Fig. 10A) and indicate that 
the baryte removal technique had no effect on the abundance 
of other translucent heavy minerals. With the decrease of 
baryte the count numbers were significantly increased. 
Anhydrite was not separately counted with QEMSCAN and 
is listed under other phases in the Supplementary Table 5.

Sample NCSb-19 was also analysed with QEMSCAN in 
two separates. The untreated sample yielded only 45 translu-
cent heavy minerals with baryte forming 60% of the assem-
blage (Fig. 10B). The treated sample yielded 559 translucent 
heavy mineral grains with the proportion of baryte decreas-
ing to 38.5% (Fig. 10B). No apatite and tourmaline were 
found, reflecting the low number of translucent heavy min-
eral grains and the high proportion of baryte in the untreated 
separate, but proportions of other translucent heavy miner-
als are comparable. The analysis of CLB2.1 and NCSb-19 
indicates the importance of baryte removal which results 
in an increase in the number of other heavy mineral grains 
and decreases the risk of missing low abundance minerals.

CLB2.3 was analysed with Raman spectroscopy, which 
also recorded the counts of anhydrite. Seventeen translucent 
heavy mineral grains were identified (excluding carbonates) 
from the untreated separate. Baryte and anhydrite each form 
17.7% of the assemblage (Fig. 10C). The treated separate 
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yielded significantly more translucent heavy mineral grains 
(51 excluding carbonates). Baryte was not found and, there-
fore, had been completely removed from the sample, while 
anhydrite forms 19.6% of the assemblage (Fig. 10C). It is 
likely that anhydrite was broken down into smaller pieces, 
but still larger than the 20 µm sieve size. Another treated 
separate from CLB2.3 was analysed with SEM–EDS, which 
showed no baryte but abundant anhydrite (Fig. 10C), and 
suggesting breakdown of larger anhydrite grains into numer-
ous > 20 µm fragments. It is, therefore, concluded that the 
short vibration time intervals removed the baryte, but for 
anhydrite removal a longer time interval is required, which 
requires more testing.

The tested samples showed no significant variations of 
heavy mineral abundances in treated and untreated samples, 
indicating that only baryte was removed. Count numbers 
were increased in the treated samples and identification of 
some less abundant heavy minerals was possible. For anhy-
drite contamination, the method is promising, but more tests 
with different settings need to be conducted.

Discussion

Provenance of the sediments

Cuu Long Basin

The sediments analysed from the Cuu Long Basin were 
sourced by two different river systems. The first river, which 
we term the proto-Mekong 1, active from the Oligocene to 
Early Miocene, deposited the Tra Tan (seismic group D) and 
Bach Ho (seismic group BI) Formations. These formations 
have Cretaceous-dominated detrital zircon age populations 
(Fig. 6), which indicate a proximal Da Lat Zone basement 
source (Nguyen et al. 2004; Shellnutt et al. 2013; Hennig-
Breitfeld et al. 2021). The translucent heavy mineral assem-
blages vary in the three analysed samples, but relatively 
low ZTR values are characteristic, with either high propor-
tions of epidote or apatite (Fig. 8A). The zircons are almost 
entirely Cretaceous, very similar to the onshore Oligocene 
to Miocene Di Linh Formation (Fig. 11; Hennig et al. 2018). 
The heavy mineral assemblage of the Di Linh Formation dif-
fers from the offshore samples in being rich in ultra-stable 
grains (Hennig et al. 2018), which might indicate hydraulic 
sorting or mineral breakdown caused by acid groundwaters 
on land. Epidote, which is dominant in the Bach Ho sam-
ples, was also reported from the Di Linh Formation (Hennig 
et al. 2018), whereas all other onshore and Cuu Long Basin 
formations are almost barren of epidote. The lowermost 
analysed Cuu Long Basin sample CLB9.1 of the Tra Tran 
Formation has no epidote in contrast to the overlying Bach 
Ho Formation samples. This implies a fresh epidote-free 

granitoid source for the older Tra Tran Formation (seismic 
group D), while the epidote in the Bach Ho Formation sam-
ples was derived from altered plagioclase and amphibole 
in deeper altered granitoids. Hennig-Breitfeld et al. (2021) 
reported epidote alteration in most onshore granitoids and 
in associated volcanic rocks, and Jagodziński et al. (2020) 
reported elevated epidote concentrations in the eastern 
Mekong River distributaries in the Da Lat Zone and east of 
the Mekong River Delta from recent deposits, indicating that 
the Da Lat Zone is a source for epidote.

The overlying Con Son Formation records a major prov-
enance change suggesting input from a different Mekong 
river in the Middle Miocene. Zircon age populations are 
dominated by Triassic ages with a few Precambrian grains 
of c. 800 Ma, c. 1.8 Ga, and 2.5 Ga, as well as Cretaceous 
and Ordovician–Silurian grains (Fig. 6). The detrital zircon 
ages are typical of Indochina with a dominance of Trias-
sic Sukhothai arc ages (Sevastjanova et al. 2011; Burrett 
et al. 2014), but could also indicate a far larger drainage 
area including the Qiangtang, Yangtze or Songpan–Garze 
blocks, where similar age spectra are known (Wang et al. 
2020 and references therein). Rutile, tourmaline and garnet 
proportions increase significantly in the Con Son Formation 
(Fig. 8A), and high proportions of these ultra-stable heavy 
minerals indicates multi-recycling of metamorphic sources. 
Mineral ratios GZi, CZi, ZTR also indicate a major source 
change (Fig. 9A, C). It is unclear exactly when the Con Son 
Formation was deposited unconformably above the Bach Ho 
Formation and precisely when this significant source change 
occurred. Morley et al. (2019) interpret the top of the Bach 
Ho Formation as c. 20.5 Ma which could be the age of the 
change. However, the unconformity might have cut down 
into the underlying Bach Ho Formation during a hiatus in 
deposition. The rearrangement of the river systems would 
suggest some period of non-deposition/erosion. Hiep (2017) 
suggested a Middle Miocene age (starting at c. 16 Ma) for 
the beginning of deposition of the Con Son Formation. 
The major unconformity we recognise here, the Bach Ho 
Unconformity, may, therefore, have an age between 20.5 and 
16 Ma. Heavy minerals of the Dong Nai and Con Son for-
mations are very similar, with most heavy mineral indices 
showing comparable values, but there is also a minor change 
in zircon ages from the Con Son Formation to the Dong Nai 
Formation (Fig. 6). Although the provenance remained the 
same, suggesting the same river system, there is an Eocene 
zircon population in the Dong Nai Formation indicating an 
additional source which was not available for the underly-
ing Con Son Formation. The Eocene zircons were probably 
derived from magmatic rocks in the Da Lat Zone or southern 
Indochina that were unroofed during the Late Miocene. Fyhn 
et al. (2010) suggested Palaeocene to Early Eocene inver-
sion in the Phuquoc–Kampot Som Basin, which if associated 
with magmatism, could be a potential proximal source.
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Nam Con Son Basin

Three formations were analysed from the Nam Con Son 
Basin. The Cau (T20) and Dua (T30) formations have very 
similar heavy mineral assemblages consisting mainly of 
rutile with zircon, tourmaline, monazite, apatite, and 
other less abundant minerals, such as garnet or Cr-spinel 

(Fig. 8B). An assemblage with high ZTR values is usually 
typical of multi-recycled sedimentary sources. The detrital 
zircon age populations in both formations are dominated 
by Permian–Triassic and Paleoproterozoic ages around 
1.8–1.9 Ga (Fig. 7). In addition, there are significant Cre-
taceous, Jurassic, Silurian, Neoproterozoic, and Protero-
zoic–Archean (c. 2.5 Ga) age populations. The detrital 

Fig. 11   Detrital zircon age histograms with probability density curves 
of the lower CLB (Tra Tan, Bach Ho formations) and comparison to 
the Da Lat Zone sedimentary rocks (data from Hennig et  al. 2018). 
All samples dominated by Cretaceous zircons derived from the 

Da Lat Zone. The Da Lat River drained into northern Vietnam that 
results in an increase in Permian–Triassic and Precambrian detrital 
zircons
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zircon ages suggest similar sources in Indochina, possibly 
as far as the Qiangtang block. The Cau Formation contains 
almost twice the number of Phanerozoic detrital zircons 
compared to Precambrian grains, while the ratio decreases 
in the Dua Formation to almost equal proportions, and this 
can be used to distinguish the two formations (Fig. 7). The 
unconformity between the two formations is here referred 
to as the Cau Unconformity.

Heavy mineral assemblages from the overlying Thong 
Formation (T40&50) record another source change. There is 
a decrease in rutile and an increase of apatite and tourmaline 
(Fig. 8B). The assemblage is still dominated by ZTR min-
erals and suggests multi-recycled older sedimentary rocks 
as source. The detrital zircon age populations are different 
from the underlying formations (Fig. 7). The dominant age 
population is Triassic, with only a small population of Per-
mian zircons. The Cretaceous population, previously very 
prominent, decreases significantly and indicates the Da Lat 
Zone was no longer an important source. Similarly, the 
Paleoproterozoic (c. 1.8 to 1.9 Ga) population decreases. 
Neoproterozoic (especially between 850 to 1000 Ma and 
at c. 500 Ma) and Proterozoic–Archean (c. 2.5 Ga) zircons 
increase in the Thong Formation. The Neoproterozoic ages 
are typical of the Sibumasu terrane of the Malay Peninsula 
(Hall and Sevastjanova 2012; Lin et al. 2013), especially 
without the 1.8 Ga population typical of Indochina. Sam-
ples from Sibumasu (Hall and Sevastjanova 2012) are also 
dominated by Triassic detrital zircons with few Permian 
grains. This suggests that the Thong Formation was directly 
sourced from the south, where the drainage area included 
parts of East Malaya and Sibumasu. The Thong Formation 
is part of the syn-rift 2 phase of the Nam Con Son Basin. 
The unconformity recognised between the Dua and Thong 
formations is here named Dua Unconformity. The age of the 
unconformity is relatively well established, at about 16 Ma, 
since the underlying Dua Formation was dated in this study 
as young as 17 Ma and the Thong Formation may be as old 
as 15.4 Ma (Table 1).

Mekong River evolution

The age of formation of the Mekong River, the source areas 
of sediments, and the river course through time continue to 
be debated. Wang et al. (2020) for example used the term 
paleo-Mekong for an Early Cretaceous river that may have 
drained the Qiangtang block in a similar way to the present-
day Mekong River. However, it is difficult to link the present 
Mekong River to any Early Cretaceous river in Indochina 
or South China behind an active Andean-type margin to the 
east (Shellnutt et al. 2013; Xu et al. 2016; Breitfeld et al. 
2017, 2020b; Hennig et al. 2017a, 2017b; Hennig-Breitfeld 
et al. 2021) when the topography was probably very differ-
ent. Most researchers discuss the Mekong River evolution 

from after the Cenozoic India–Asia collision (e.g., Hutch-
ison 1989; Clark et al. 2004; Clift et al. 2006; Zhang et al. 
2019), and we focus here on the Oligocene–Miocene to 
recent development of the Mekong.

Figure 12 illustrates our interpretation of the evolution 
of the Mekong River using our new provenance data and 
guided by the present-day major river courses of Indochina 
and Vietnam. The proto-Mekong 1 (Fig. 12A), of Oligo-
cene to Early Miocene age, is the Phase 1 proto-Mekong 
named by Hennig et al. (2018) with a delta slightly north 
of the present-day Mekong River and a tributary flowing 
from the Da Lat Zone inferred from the Cretaceous-dom-
inated zircon populations of the Tra Tan, Bach Ho and Di 
Linh formations (Fig. 11), and the immature heavy mineral 
assemblages of the former two. We suggest that at this time 
there was no major Mekong River system draining from far 
to the north in the India–Asia collision zone that supplied 
sediment to the offshore Vietnam Cuu Long Basin, instead 
the proto-Mekong 1 with a restricted drainage provided sedi-
ment. This is different to some other authors (e.g., Hutch-
ison 1989; Zhang et al. 2019) who have argued a proto- or 
paleo-Mekong was in place in the Oligo-Miocene draining 
the Tibetan Plateau. Hutchison (1989) favoured a straight 
proto-Mekong west of the Khorat Plateau that flowed along 
the route of the present Chao Phraya River into the Gulf of 
Thailand before Late Cenozoic faulting changed its course. 
Brookfield (1998) argued that the proto-Mekong flowed via 
the Yom River towards the Chao Phraya until river capture 
in the Late Cenozoic resulted in the present-day Mekong 
course. Clark et al. (2004) proposed that the Upper Mekong 
flowed into a paleo-Red River before capture formed the 
modern Mekong River. None of these rivers with headwa-
ters in the Himalaya or Tibetan Plateau had river courses 
or delta locations similar to the present-day Mekong River. 
Clift et al. (2008) modelled several unnamed rivers draining 
the Tibetan Plateau flowing to the south, and like Hennig 
et al. (2018), interpreted an early proto-Mekong with drain-
age restricted to Vietnam. The various proposed courses of 
the paleo- or proto-Mekong Rivers are discussed in detail in 
Carling (2009).

At 25 Ma (Fig. 12A) we propose using the term proto-
Chao Phraya for the river system identified by Hutchison 
(1989) and Brookfield (1998) that drained southwards from 
the India–Asia collision zone towards the Gulf of Thailand/
Malay Basin. This river system likely carried sediment to 
the Nam Con Son Basin. We suggest there were two dif-
ferent strands of the proto-Chao Phraya, a western strand 
that would become the Salween and an eastern strand which 
would become the proto-Mekong 2 from the Middle Mio-
cene onwards. This proto-Mekong 2 was formed by capture 
of the eastern strand of the proto-Chao Phraya by the proto-
Mekong 1 (Fig. 12B). The new river had a course similar 
to the present-day Mekong and drained a large Indochina 
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to Himalayan region, consistent with Nie et  al. (2018) 
and Zhang et al. (2019) who also suggested a large proto-
Mekong River draining back into the Tibetan Plateau from at 
least the Mid-Miocene. Detrital zircon age populations from 
the Con Son and Dong Nai formations (Cuu Long Basin) are 
very similar to the present-day Mekong zircon signatures 
(Fig. 13), indicating a similar drainage to that of today. Its 

delta was likely still in the vicinity of the Da Lat Zone as 
the present-day Mekong River delta was not formed until 
the Late Pleistocene to Holocene (e.g. Ta et al. 2002, 2021; 
Tanabe et al. 2003; Nguyen et al. 2010; Xue et al. 2010; 
Dung et al. 2013; Thanh et al. 2021). The western strand of 
the proto-Chao Phraya may have developed into the Salween 
River in the Middle Miocene leaving a reduced Chao Phraya 
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Fig. 12   Drainage reconstruction of the Mekong River using the 
present-day river courses (marked as grey) as base. A) At c. 25 Ma 
the Proto-Mekong 1 with restricted drainage filled the CLB and the 
proto-Chao Phraya with two headwater strands draining Indochina 
and the Himalaya into the NCSB. B) Reconstruction at c. 15 Ma the 
proto-Mekong 1 had expanded and captured the headwaters of the 
proto-Chao Phraya to form the proto-Mekong 2 with a river course 

comparable to the present-day Mekong. The Salween may have also 
been developed at this time. The Chao Phraya with restricted drain-
age comparable to the present-day was established. C) Reconstruction 
in the Pleistocene, where a northern strand of the proto-Mekong 2 
developed into the Da Lat River draining northern Vietnam. D) Pre-
sent-day situation, where the Mekong delta was established south of 
the Da Lat Zone, bypassing the zone completely
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(Fig. 12B). The Irrawaddy River (or Ayeyarwady) of Central 
Myanmar west of the Salween has been in its current geo-
graphical position since the late Oligocene, c. 27 Ma (Gough 
et al. 2020) draining the Indo-Myanmar Ranges in the west 
and the Eastern Himalayan Syntaxis in the north. The north-
east tributary of the proto-Mekong 2 was to become the Da 
Lat River (Phases 2 and 3 of the proto-Mekong of Hennig 
et al. 2018) in the Plio-Pleistocene (Fig. 12C) depositing the 
Ba Mieu and Song Luy formations in the Da Lat Zone. It 
is unclear what exactly caused the Mekong reorganisation, 
but Cenozoic uplift (in particular Miocene) of the Khorat 
Plateau (Mitchell 1986; Racey et al. 1997; Morley 2012) or 
Late Cenozoic to Pleistocene basalt magmatism associated 
with uplift in the Da Lat Zone (Rangin et al. 1995; Hoang 
and Flower 1998; Lee et al. 1998; An et al. 2017) seem to 
have a major influence at least on the course of the lower 
Mekong (Fig. 12D).

The fill of the Nam Con Son Basin was not directly linked 
to the proto-Mekong system. Detrital zircon ages of the Oli-
gocene to Early Miocene Nam Con Son Basin sediments 
are very similar to the Middle to Late Miocene fills of the 
Cuu Long Basin (Fig. 13). This suggests that the proto-Chao 
Phraya (Fig. 12A) which drained from far to the north into 
the Tibet Plateau fed sediment into the Nam Con Son Basin 
before the Middle Miocene via the then fluvial area of the 
Gulf of Thailand (Fig. 12A). After the Dua Unconformity 
in the Middle Miocene the Nam Con Son Basin was filled 
mainly by the Kelantan River (Fig. 12B), which drained back 
into Sibumasu. The interpretation that the Pleistocene fill 
of the Nam Con Son Basin was derived from a prograd-
ing paleo-Mekong (e.g. Matthews et al. 1997), therefore, 
seems unlikely. Figure 14A illustrates the paleogeography 
of the southern South China Sea region in the late Oligocene 
before the Bach Ho and Dua unconformities, and Fig. 14B 
after the unconformities in the Middle Miocene with the 
major river courses. The results of this study support the 
interpretation of Hennig et al. (2018) of a major mid-Mio-
cene unconformity in southern Vietnam and Indochina at 
which the drainage network was reorganised.

Detrital zircon age comparison 
of the proto‑Mekong(s) with the proto‑Chao Phraya

The MDS plot (Fig. 15) of the detrital zircon age data from 
this study compared to the present-day Mekong data (Bodet 
and Schärer 2000; Clift et al. 2006; Nguyen et al. 2018) and 
the onshore Da Lat Zone sedimentary rocks (Hennig et al. 
2018), shows the evolution of the different systems and their 
similarities by scaling the data of samples/formations into 
two dimensions (Vermeesch 2013) for a faster visual repre-
sentation. The Oligocene to Early Miocene fill of the Cuu 
Long Basin (Tra Tan, Bach Ho formations) was derived from 
the proto-Mekong 1, which had a localised drainage of the 

Da Lat Zone and a river delta along the SE Vietnam coast-
line directly adjacent to the Cuu Long Basin. The onshore 
Di Linh Formation represents the last onshore remains of 
this system. This fill of the Cuu Long Basin is estimated 
to be as thick as c. 4000 m (Cuong and Warren 2009) and 
indicates that despite the restricted drainage, large amounts 
of material were eroded and deposited by the proto-Mekong 
1. In contrast, the Middle to Late Miocene Cuu Long Basin 
sediments (Con Son and Dong Nai formations) resemble 
the present-day Mekong deposits in their detrital zircon age 
populations and were part of the proto-Mekong 2 system 
(Figs. 13, 15). The Cretaceous population in both forma-
tions, and the Jurassic zircon population in the Con Son For-
mation indicate a slightly different drainage compared to the 
present-day, probably involving some minor input from the 
Da Lat Zone that is by-passed by the present-day Mekong 
(Fig. 12B). The Cretaceous-dominated proto-Mekong 1 age 
distribution signature is illustrated in Fig. 11. Noticeable in 
the histograms is that the offshore formations have a wide 
Late Cretaceous age peak from c. 80 to 110 Ma, while the 
Di Linh Formation has a bimodal Cretaceous age distribu-
tion, suggesting local igneous bodies had strong influence on 
the age distribution. The offshore samples have also a slight 
population in the Permian–Triassic, which is almost absent 
in the Di Linh sample that suggests input of older basement 
in the vicinity of the delta (e.g., Chau Thoi). The Da Lat 
River developed its drainage towards the north in the Plio-
cene, resulting in an increase of Triassic and Precambrian 
zircons derived from Indochina and South China basement 
(Fig. 11; Hennig et al. 2018). The Ba Mieu and Song Luy 
formations deposited by the Da Lat River (Phase 2 and 3 of 
the proto-Mekong in Hennig et al. 2018) are clearly distin-
guishable from the proto-Mekong 1 and the proto-Mekong 
2/proto-Chao Phraya by their detrital zircon ages (Figs. 11 
and 15).

The lower Nam Con Son Basin successions (Cau/T20 
and Dua formations/T30) are also very similar to the upper 
Cuu Long Basin samples (Fig. 15), especially the Cau For-
mation, indicating a similar provenance and supporting the 
suggestion that the headwaters of the proto-Chao Phraya 
would later become the proto-Mekong 2. The heavy min-
eral assemblages are mineralogically comparable, but min-
eral proportions in the Cuu Long Basin and Nam Con Son 
Basin samples vary, possibly as a result of sorting. Garnet 
is relatively abundant in the Cuu Long Basin but present 
only in low amounts in the Cau and Dua formations of the 
Nam Con Son Basin. The Cretaceous zircons in the Cau 
and Dua formations (Figs. 7 and 13) were likely sourced by 
highs at the basin margin (e.g. Con Son Swell) rather than 
input from the Da Lat Zone. The overlying Thong Formation 
(T40&50) has small differences in detrital zircon ages that 
is represented by being slightly off T20 and T30 (Fig. 15), 
and has also a slightly different heavy mineral assemblage 
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(Fig. 8B). The increase in Cambrian and Neoproterozoic zir-
cons (Figs. 7 and 13) is a typical Sibumasu signature, indi-
cating a southwestern source in the Malay Peninsula drained 
by the Kelantan River. A similar drainage for the Nam Con 
Son Basin fill was concluded by Morley et al. (2011) and 
Morley and Morley (2013).

Conclusions

Detrital zircon ages and heavy mineral assemblages of 
Cenozoic sedimentary formations in on- and offshore SE 
Vietnam can be used to reconstruct the drainage history of 
major river systems in Indochina. The Oligocene to Early 

Miocene basin fill of the Cuu Long Basin (Tra Tan and Bach 
Ho formations) was derived almost entirely from uplifted 
Dal Lat Zone basement highs along the basin margin by 
the proto-Mekong 1. The Bach Ho Unconformity marks a 
major source change and the overlying Con Son and Dong 
Nai formations have a provenance similar to the present-
day Mekong, indicating that by the Early–Middle Miocene 
boundary the proto-Mekong 2 had a course similar to the 
present-day. The proto-Mekong 1 captured the headwaters 
of the proto-Chao Phraya to form the proto-Mekong 2. The 
Oligocene to Early Miocene basin fill of the Nam Con Son 
Basin (Cau and Dua formations) has detrital zircon ages that 
resemble the present-day Mekong and the upper Cuu Long 
Basin fill, suggesting a similar provenance. We propose that 
in the Oligocene to Early Miocene a proto-Chao Phraya, 
with a drainage area into the Himalaya highlands, filled the 
Nam Con Son Basin. The Thong Formation of the Nam Con 
Son Basin, unconformable on top of the Dua Formation, has 
a partly Sibumasu provenance and suggests input from the 
Malay–Thai Peninsula. The proto-Mekong 1 and 2 did not 

Fig. 13   Detrital zircon age histograms with probability density curves 
of samples with heterogeneous, Triassic-dominated age peaks (CLB: 
Con Son, Dong Nai formations; NCSB: Cau, Dua, Thong formations) 
and comparison to the present-day Mekong River (data from Bodet 
and Schärer 2000; Clift et al. 2006; Nguyen et al. 2018)

◂

Fig. 14   Paleogeography maps and reconstruction of the proto-
Mekong River course during the two crucial time intervals (modified 
from Hall 2013; Morley and Morley 2013; Hennig-Breitfeld et  al. 
2019; Breitfeld et  al. 2020a). A) Reconstruction at c. 25 Ma before 
the Bach Ho and Dua unconformities. The CLB is filled by the proto-
Mekong 1 with a drainage area of the Da Lat Zone. The proto-Chao 
Phraya with the Kelantan filled the NCSB with the Gulf of Thailand 
being a fluvial–lacustrine area. The Sunda River drains the Sunda 
Shelf and had its delta in the NW Borneo region (based on Hennig-

Breitfeld et al. 2019; Breitfeld et al. 2020a). B) Reconstruction at c. 
15 Ma after the major drainage reorganisation. Proto-Mekong 1 has 
captured headwaters of proto-Chao Phraya to form the proto-Mekong 
2 with a similar provenance and river course as the present-day that 
fills the CLB. The Kelantan fills the NCSB from the Malay–Thai 
Peninsula. The Da Lat River in SE Vietnam may begin to develop 
from the northern strand of the former proto-Mekong 1. The headwa-
ters of the proto-Chao Phraya were captured, leaving a Chao Phraya 
with restricted drainage similar to the present-day
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provide sediment to the Nam Con Son Basin. In both basins 
unconformities around the Early to Miocene boundary (20.5 
to 16 Ma for the Cuu Long Basin Bach Ho Unconformity 
and 17 to 15.4 Ma for the Nam Con Son Basin Dua Uncon-
formity) are marked by a major source change associated 
with a drainage reorganisation.
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