121 research outputs found

    Effects often overlooked in lipid oxidation in oil-in-water emulsions:Agitation conditions and headspace-to-emulsion ratio

    Get PDF
    The effects of the agitation conditions and headspace-to-emulsion volume ratio on lipid oxidation in emulsions can be considerable, but have not been systematically investigated yet. In the current paper, lipid oxidation was monitored in model oil-in-water (O/W) emulsions at pH 4.0 and 25°C in the presence of 200 μM iron sulfate. The formation of primary (conjugated dienes and hydroperoxides) and secondary (p-anisidine value and TBARS) oxidation products confirmed that using rotating or shaking devices doubled the rate of oxidation product formation compared to a non-agitated system, as a result of enhanced oxygen transfer. Furthermore, we found that a higher headspace-to-emulsion volume ratio at least doubled the rate of lipid oxidation due to a higher amount of oxygen available per mass of oil, which is in agreement with the kinetics of the reaction. This indicates that the variation in literature data on lipid oxidation in emulsions can be attributed to differences in mixing conditions and volume ratios. These factors are crucial and should be reported systematically along with the agitation conditions, and sampling method. This will enable a better comparison of literature information.</p

    Bacterial lipoxygenases: Biochemical characteristics, molecular structure and potential applications

    Get PDF
    Lipoxygenases (LOXs) are enzymes that catalyze dioxygenation of polyunsaturated fatty acids into fatty acid hydroperoxides. The formed fatty acid hydroperoxides are of interest as they can readily be transformed to a number of value-added compounds. LOXs are widely distributed in both eukaryotic and prokaryotic organisms, including humans, animals, plants, fungi and bacteria. Compared to eukaryotic enzymes, bacterial enzymes are typically easier to produce at industrial scale in a heterologous host. However, many bacterial LOXs were only identified relatively recently and their structure and biochemical characteristics have not been extensively studied. A better understanding of bacterial LOXs' structure and characteristics will lead to the wider application of these enzymes in industrial processes. This review focuses on recent findings on the biochemical characteristics of bacterial LOXs in relation to their molecular structure. The basis of LOX catalysis as well as emerging determinants explaining the regio- and enantioselectivity of different LOXs are also summarized and critically reviewed. Clustering and phylogenetic analyses of bacterial LOX sequences were performed. Finally, the improvement of bacterial LOXs by mutagenesis approaches and their application in chemical synthesis are discussed

    Ageing and apoE change DHA homeostasis: relevance to age-related cognitive decline

    Get PDF
    Epidemiological studies fairly convincingly suggest that higher intakes of fatty fish and n-3 fatty acids are associated with reduced risk of Alzheimer's disease (AD). DHA in plasma is normally positively associated with DHA intake. However, despite being associated with lower fish and DHA intake, unexpectedly, plasma (or brain) DHA is frequently not lower in AD. This review will highlight some metabolic and physiological factors such as ageing and apoE polymorphism that influence DHA homeostasis. Compared with young adults, blood DHA is often slightly but significantly higher in older adults without any age-related cognitive decline. Higher plasma DHA in older adults could be a sign that their fish or DHA intake is higher. However, our supplementation and carbon-13 tracer studies also show that DHA metabolism, e.g. transit through the plasma, apparent retroconversion and β-oxidation, is altered in healthy older compared with healthy young adults. ApoE4 increases the risk of AD, possibly in part because it too changes DHA homeostasis. Therefore, independent of differences in fish intake, changing DHA homeostasis may tend to obscure the relationship between DHA intake and plasma DHA which, in turn, may contribute to making older adults more susceptible to cognitive decline despite older adults having similar or sometimes higher plasma DHA than in younger adults. In conclusion, recent development of new tools such as isotopically labelled DHA to study DHA metabolism in human subjects highlights some promising avenues to evaluate how and why DHA metabolism changes during ageing and AD

    The study of the mercury cycle in polar regions: An international study in Ny-Alesund, Svalbard

    Get PDF
    Mercury (Hg) is a toxic pollutant and it can be strongly accumulated in the food chain, especially in Polar Regions. This paper presents a part of the work that has been on-going for 3-4 years in Ny-Alesund, Svalbard within the frame of an international collaboration. In Ny-Alesund in spring 2003, the atmospheric chemistry of mercury has been studied so as to better understand the formation of oxidized mercury species in the atmosphere that could be deposited onto snow surfaces. The role of snow as a potential source of mercury to the atmosphere or as a sink has also been approached to better understand the behavior of this metal. Chemical and biological processes seem to play a major role in Hg storage in snow. When melting, snow could be a major source of Hg into the various ecosystems and this toxin could therefore be accumulated into the food chain

    Kinetics of 13C-DHA before and during fish-oil supplementation in healthy older individuals

    Get PDF
    Background: Docosahexaenoic acid (DHA) kinetics appear to change with intake, which is an effect that we studied in an older population by using uniformly carbon-13–labeled DHA (13C-DHA). Objective: We evaluated the influence of a fish-oil supplement over 5 mo on the kinetics of 13C-DHA in older persons. Design: Thirty-four healthy, cognitively normal participants (12 men, 22 women) aged between 52 and 90 y were recruited. Two identical kinetic studies were performed, each with the use of a single oral dose of 40 mg 13C-DHA. The first kinetic study was performed before participants started taking a 5-mo supplementation that provided 1.4 g DHA/d plus 1.8 g eicosapentaenoic acid (EPA)/d (baseline); the second study was performed during the final month of supplementation (supplement). In both kinetic studies, blood and breath samples were collected ≤8 h and weekly over 4 wk to analyze 13C enrichment. Results: The time × supplement interaction for 13C-DHA in the plasma was not significant, but there were separate time and supplement effects (P < 0.0001). The area under the curve for plasma 13C-DHA was 60% lower while subjects were taking the supplement than at baseline (P < 0.0001). The uniformly carbon-13–labeled EPA concentration was 2.6 times as high 1 d posttracer while patients were taking the supplement as it was at baseline. The mean (±SEM) plasma 13C-DHA half-life was 4.5 ± 0.4 d at baseline compared with 3.0 ± 0.2 d while taking the supplement (P < 0.0001). Compared with baseline, the mean whole-body half-life was 61% lower while subjects were taking the supplement. The loss of 13C-DHA through β-oxidation to carbon dioxide labeled with carbon-13 increased from 0.085% of dose/h at baseline to 0.208% of dose/h while subjects were taking the supplement. Conclusions: In older persons, a supplement of 3.2 g EPA + DHA/d increased β-oxidation of 13C-DHA and shortened the plasma 13C-DHA half-life. Therefore, when circulating concentrations of EPA and DHA are increased, more DHA is available for β-oxidation. This trial was registered at clinicaltrials.gov as NCT01577004

    Challenges to determining whether DHA can protect against age-related cognitive decline

    Get PDF
    DHA, an omega-3 fatty acid, is an important constituent of brain membranes and has a key role in brain development and function. This review aims to highlight recent research on DHA’s role during age-related cognitive decline and Alzheimer’s disease. Animal and in vitro studies have provided some interesting mechanistic leads, especially on brain glucose metabolism, that may be involved in neuroprotection by DHA. However, results from human studies are more mitigated, perhaps due to changing DHA metabolism during aging. Recent innovative tools such as 13C-DHA for metabolic studies and 11C-DHA for PET provide interesting opportunities to study factors that affect DHA homeostasis during aging and to better understand whether and how to use DHA to delay or treat Alzheimer’s disease

    Interlaboratory study on lipid oxidation during accelerated storage trials with rapeseed and sunflower oil analyzed by conjugated dienes as primary oxidation products

    Get PDF
    11 Páginas.-- 5 Figuras.-- 2 Tablas.-- Material suplementarioAccelerated storage tests are frequently used to assess the oxidative stability of foods and related systems due to its reproducibility. Various methods and experimental conditions are used to measure lipid oxidation. Differences between laboratories make it necessary to determine the repeatability and reproducibility of oxidation tests performed under the same conditions. The objective of the present interlaboratory study was to evaluate the outcome of a storage test for two different bulk oils, sunflower oil (SFO) and rapeseed oil (RSO), during a period of 9 weeks at 20°C, 30°C, 40°C, and 60°C. Sixteen laboratories were provided with bottled oils and conducted the storage tests according to a detailed protocol. Lipid oxidation was monitored by the formation of conjugated dienes (CD) and the activation energy (Ea) was determined for comparative purposes and statistically evaluated. An increase in CD formation was observed for both oils when the storage temperature was increased in all laboratories. The Ea,1 ranged from 47.9 to 73.3 kJ mol−1 in RSO and from 27.8 to 62.6 kJ mol−1 in SFO, with average values of 58.2 and 46.8 kJ mol−1, respectively. The reproducibility coefficients were 10.9% and 18.2% for RSO and SFO, respectively. Practical applications: In order to compare results on oxidative stability of foods derived from different studies, the reproducibility of storage tests and methods employed to evaluate the oxidation level should be considered. This study provides fundamental data on the reproducibility of lipid oxidation under accelerated storage conditions and defines important parameters to be considered for the conduction of experiments.Open access funding enabled and organized by Projekt DEAL. We thank Brökelmann + Co – Oelmühle GmbH + Co for the donation of the vegetable oils. The authors gratefully acknowledge Lina Stuthmann from the Food Technology Division, Kiel University and Inge Holmberg from the National Food Institute, Technical University of Denmark for their skillful help.Peer reviewe

    n-3 Polyunsaturated fatty acids (n-3 PUFA) and prevention of brain damages induced by a chronic stress

    No full text
    L’équilibre alimentaire entre les AGPI n-6 et les AGPI n-3 joue probablement un rôle important dans le fonctionnement du système nerveux central et notamment dans la régulation de la neurotransmission. Des études suggèrent qu’une déficience en AGPI n-3 renforcerait la sensibilité des individus à des agressions de type chronique, tel que le stress ou le vieillissement. Notre objectif était de caractériser l’impact des apports alimentaires en AGPI n-3 sur la réponse à un stress chronique. Pour cela, la régulation de paramètres biochimiques, comportementaux et électrophysiologiques par un stress chronique de contention a été évaluée chez le rat recevant différents apports alimentaires en AGPI n-3 (déficients en AGPI n-3 ; équilibrés ; enrichis en AGPI-LC n-3). L’influence des glucocorticoïdes (hormones impliquées dans la réponse au stress) et des AGPI sur des fonctions cellulaires participant à la transmission synaptique a été analysée in vitro par des mesures de libération de neurotransmetteurs sur la lignée neuroblastique SH_SY5Y et par l’analyse des propriétés régulatrices astrocytaires en culture primaire.Nos résultats montrent que, chez le rat, la réponse au stress est modulée par les apports alimentaires en AGPI n-3 : la déficience en AGPI n-3 accentue la sensibilité au stress, notamment la réduction de l’activité locomotrice et la sensibilité aux environnements anxiogènes ; à l’inverse, l’enrichissement en AGPI-LC n-3 atténue la réponse au stress chronique, en réduisant la perte de poids, le pic de corticostérone plasmatique et la réponse émotionnelle. Comme le suggèrent les résultats obtenus in vitro, ces effets sont liés à des régulations complexes par les AGPI et les glucocorticoïdes des paramètres de libération de neurotransmetteur, de la plasticité morphologique astrocytaire et de la capacité de capture du glutamate par les astrocytes.Dietary balance between n-6 PUFA and n-3 PUFA probably plays a major role in the regulation of brain function. Some studies suggest that an n-3 PUFA deficiency exacerbates the sensitivity of individuals to emotional disturbances, such as chronic stress. The aim of our work was to determine the impact of n-3 PUFA dietary intakes on stress response. The regulation of biochemical, electrophysiological and behavioural parameters by chronic restraint stress has been evaluated in rats receiving different n-3 PUFA supplies (n-3 PUFA deficient, balanced, n-3 LC-PUFA enriched). In parallel, we have conduced an in vitro study to characterize the effects of glucocorticoids (one of the major hormone involved in stress response) and of PUFA on the release of neurotransmitter (in human neuroblastoma SH_SY5Y cells) and on several astrocytic properties involved in synaptic regulation (in primary culture of rat astrocytes). In rats, we have shown that stress response is modulated by the n-3 PUFA status: the n-3 PUFA deficiency exacerbated the sensibility to stress, by aggravating the reduction of locomotor activity and the sensibility to anxiogenic environment; conversely, the n-3 LC-PUFA enrichment reduced rat responses to chronic stress, by limiting the weight loss, the increase in plasma corticosterone and the emotional response. As suggested by the results obtained in vitro, these effects are linked to complex influences of PUFA and glucocorticoids on the release of neurotransmitter and on astroglial morphological plasticity and glutamate uptake capacity
    corecore