41 research outputs found

    Cloning and characterization of a selenium-independent glutathione peroxidase (HC29) from adult Haemonchus contortus

    Get PDF
    The complete coding sequence of Haemonchus (H.) contortus HC29 cDNA was generated by rapid amplification of cDNA ends in combination with PCR using primers targeting the 5'- and 3'-ends of the partial mRNA sequence. The cloned HC29 cDNA was shown to be 1,113 bp in size with an open reading frame of 507 bp, encoding a protein of 168 amino acid with a calculated molecular mass of 18.9 kDa. Amino acid sequence analysis revealed that the cloned HC29 cDNA contained the conserved catalytic triad and dimer interface of selenium-independent glutathione peroxidase (GPX). Alignment of the predicted amino acid sequences demonstrated that the protein shared 44.7~80.4% similarity with GPX homologues in the thioredoxin-like family. Phylogenetic analysis revealed close evolutionary proximity of the GPX sequence to the counterpart sequences. These results suggest that HC29 cDNA is a GPX, a member of the thioredoxin-like family. Alignment of the nucleic acid and amino acid sequences of HC29 with those of the reported selenium-independent GPX of H. contortus showed that HC29 contained different types of spliced leader sequences as well as dimer interface sites, although the active sites of both were identical. Enzymatic analysis of recombinant prokaryotic HC29 protein showed activity for the hydrolysis of H2O2. These findings indicate that HC29 is a selenium-independent GPX of H. contortus

    Onchocerciasis (river blindness) – more than a century of research and control

    Get PDF
    This review summarises more than a century of research on onchocerciasis, also known as river blindness, and its control. River blindness is an infection caused by the tissue filaria Onchocerca volvulus affecting the skin, subcutaneous tissue and eyes and leading to blindness in a minority of infected persons. The parasite is transmitted by its intermediate hosts Simulium spp. which breed in rivers. Featured are history and milestones in onchocerciasis research and control, state-of-the-art data on the parasite, its endobacteria Wolbachia, on the vectors, previous and current prevalence of the infection, its diagnostics, the interaction between the parasite and its host, immune responses and the pathology of onchocerciasis. Detailed information is documented on the time course of control programmes in the afflicted countries in Africa and the Americas, a long road from previous programmes to current successes in control of the transmission of this infectious disease. By development, adjustment and optimization of the control measures, transmission by the vector has been interrupted in foci of countries in the Americas, in Uganda, in Sudan and elsewhere, followed by onchocerciasis eliminations. The current state and future perspectives for control, elimination and eradication within the next 20–30 years are described and discussed. This review contributes to a deeper comprehension of this disease by a tissue-dwelling filaria and it will be helpful in efforts to control and eliminate other filarial infections

    A novel type of glutathione S-transferase in Onchocerca volvulus.

    No full text
    Onchocerca volvulus is a pathogenic human filarial parasite which, like other helminth parasites, is capable of evading the host's immune responses by a variety of defense mechanisms which are likely to include the detoxification and repair mechanisms of the enzyme glutathione S-transferase (GST). In this study, we show that one of the previously described GSTs from O. volvulus appears to possess the characteristics of a secreted enzyme. When the complete O. volvulus GST1 (OvGST1) sequence presented here is compared with those of other GSTs, 50 additional residues at the N terminus are observed, the first 25 showing characteristics of a signal peptide. This is consistent with the N-terminal sequence data on the native mature enzyme which begins at amino acid 26, based on the deduced protein sequence from the cDNA. The native protein, without the signal peptide sequence, possesses a 24-amino-acid extension not present in other GSTs. The deduced amino acid sequence of the OvGST1 cDNA clone was shown to possess four potential N-glycosylation sites. Digestion of O. volvulus homogenate with endoglycosidase, followed by detection of OvGST1 with specific antibody, indicated that the enzyme possesses at least two N-linked oligosaccharide chains. Gel filtration of the Escherichia coli-produced recombinant OvGST1 showed that it is enzymatically active as a nonglycosylated dimer. OvGST1 is found in the media surrounding adult worms maintained in culture, indicating that, in vitro, this enzyme is released from the worm. The strongest immunostaining for OvGST1 was observed in the outer cellular covering of the adult worm body, the syncytial hypodermis, especially in the interchordal hypodermis, where the peripheral membrane forms a series of lamellae which run into the outer zone of the hypodermal cytoplasm
    corecore