8 research outputs found

    Age-related selection bias in Parkinson's disease research : are we recruiting the right participants?

    Get PDF
    Acknowledgements We acknowledge the earlier work of Dr Kate Taylor and Dr Dominique Twelves on the previous systematic review of incidence studies in Parkinson’s disease. Funding This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Authors report the following funding received during the conduct of this study: Dr Macleod: fellowship funding from the Chief Scientist Office of the Scottish Government and NHS Education for Scotland; grant funding Parkinson’s UK, the Academy of Medical Sciences, NHS Grampian Endowments, the Wellcome Trust, the University of Aberdeen. Dr Henery: financial support from the University of Aberdeen Dr Nwajiugo: none Dr Scott: none Dr Caslake: grant funding from Parkinson’s UK Dr Counsell: grant funding from the Chief Scientist Office of the Scottish Government, the PSP Association, and NHS Grampian Endowments.Peer reviewedPostprin

    Social media use and adolescent health-risk behaviours: a systematic review and meta-analysis

    Get PDF
    Objectives To examine the association between social media use and health risk behaviours in adolescents (defined as those 10-19 years). Design Systematic review and meta-analysis. Data sources EMBASE, Medline, APA PsycINFO, SocINDEX, CINAHL, SSRN, SocArXic, PsyArXiv, medRxiv, and Google Scholar (1 January 1997 to 6 June 2022). Methods Health risk behaviours were defined as use of alcohol, drugs, tobacco, electronic nicotine delivery systems, unhealthy dietary behaviour, inadequate physical activity, gambling, and anti-social, sexual risk, and multiple risk behaviours. Included studies reported a social media variable (ie, time spent, frequency of use, exposure to health risk behaviour content, or other social media activities) and one or more relevant outcomes. Screening and risk of bias assessments were completed independently by two reviewers. Synthesis without meta-analysis based on effect direction and random-effects meta-analyses was used. Effect modification was explored using meta-regression and stratification. Certainty of evidence was assessed using GRADE (Grading of Recommendations, Assessment, Development and Evaluations). Results Of 17 077 studies screened, 126 were included (73 included in meta-analyses). The final sample included 1 431 534 adolescents (mean age 15.0 years). Synthesis without meta-analysis indicated harmful associations between social media and all health risk behaviours in most included studies, except inadequate physical activity where beneficial associations were reported in 63.6% of studies. Frequent (v infrequent) social media use was associated with increased alcohol consumption (odds ratio 1.48 (95% confidence interval 1.35 to 1.62); n=383 068), drug use (1.28 (1.05 to 1.56); n=117 646), tobacco use (1.85, 1.49 to 2.30; n=424 326), sexual risk behaviours (1.77 (1.48 to 2.12); n=47 280), anti-social behaviour (1.73 (1.44 to 2.06); n=54 993), multiple risk behaviours (1.75 (1.30 to 2.35); n=43 571), and gambling (2.84 (2.04 to 3.97); n=26 537). Exposure to content showcasing health risk behaviours on social media (v no exposure) was associated with increased odds of use of electronic nicotine delivery systems (1.73 (1.34 to 2.23); n=721 322), unhealthy dietary behaviours (2.48 (2.08 to 2.97); n=9892), and alcohol consumption (2.43 (1.25 to 4.71); n=14 731). For alcohol consumption, stronger associations were identified for exposure to user generated content (3.21 (2.37 to 4.33)) versus marketer generated content (2.12 (1.06 to 4.24)). For time spent on social media, use for at least 2 h per day (v <2 h) increased odds of alcohol consumption (2.12 (1.53 to 2.95); n=12 390). GRADE certainty was moderate for unhealthy dietary behaviour, low for alcohol use, and very low for other investigated outcomes. Conclusions Social media use is associated with adverse health risk behaviours in young people, but further high quality research is needed to establish causality, understand effects on health inequalities, and determine which aspects of social media are most harmful

    AusTraits: a curated plant trait database for the Australian flora

    No full text
    INTRODUCTION AusTraits is a transformative database, containing measurements on the traits of Australia’s plant taxa, standardised from hundreds of disconnected primary sources. So far, data have been assembled from &gt; 250 distinct sources, describing &gt; 400 plant traits and &gt; 26,000 taxa. To handle the harmonising of diverse data sources, we use a reproducible workflow to implement the various changes required for each source to reformat it suitable for incorporation in AusTraits. Such changes include restructuring datasets, renaming variables, changing variable units, changing taxon names. While this repository contains the harmonised data, the raw data and code used to build the resource are also available on the project’s GitHub repository, http://traitecoevo.github.io/austraits.build/. Further information on the project is available in the associated publication and at the project website austraits.org. Falster, Gallagher et al (2021) AusTraits, a curated plant trait database for the Australian flora. Scientific Data 8: 254, https://doi.org/10.1038/s41597-021-01006-6 CONTRIBUTORS The project is jointly led by Dr Daniel Falster (UNSW Sydney), Dr Rachael Gallagher (Western Sydney University), Dr Elizabeth Wenk (UNSW Sydney), and Dr Hervé Sauquet (Royal Botanic Gardens and Domain Trust Sydney), with input from &gt; 300 contributors from over &gt; 100 institutions (see full list above). The project was initiated by Dr Rachael Gallagher and Prof Ian Wright while at Macquarie University. We are grateful to the following institutions for contributing data Australian National Botanic Garden, Brisbane Rainforest Action and Information Network, Kew Botanic Gardens, National Herbarium of NSW, Northern Territory Herbarium, Queensland Herbarium, Western Australian Herbarium, South Australian Herbarium, State Herbarium of South Australia, Tasmanian Herbarium, Department of Environment, Land, Water and Planning, Victoria. AusTraits has been supported by investment from the Australian Research Data Commons (ARDC), via their “Transformative data collections” (https://doi.org/10.47486/TD044) and “Data Partnerships” (https://doi.org/10.47486/DP720) programs; fellowship grants from Australian Research Council to Falster (FT160100113), Gallagher (DE170100208) and Wright (FT100100910), a grant from Macquarie University to Gallagher. The ARDC is enabled by National Collaborative Research Investment Strategy (NCRIS). ACCESSING AND USE OF DATA The compiled AusTraits database is released under an open source licence (CC-BY), enabling re-use by the community. A requirement of use is that users cite the AusTraits resource paper, which includes all contributors as co-authors: Falster, Gallagher et al (2021) AusTraits, a curated plant trait database for the Australian flora. Scientific Data 8: 254, https://doi.org/10.1038/s41597-021-01006-6 In addition, we encourage users you to cite the original data sources, wherever possible. Note that under the license data may be redistributed, provided the attribution is maintained. The downloads below provide the data in two formats: austraits-3.0.2.zip: data in plain text format (.csv, .bib, .yml files). Suitable for anyone, including those using Python. austraits-3.0.2.rds: data as compressed R object. Suitable for users of R (see below). Both objects contain all the data and relevant meta-data. AUSTRAITS R PACKAGE For R users, access and manipulation of data is assisted with the austraits R package. The package can both download data and provides examples and functions for running queries. STRUCTURE OF AUSTRAITS The compiled AusTraits database has the following main components: austraits ├── traits ├── sites ├── contexts ├── methods ├── excluded_data ├── taxanomic_updates ├── taxa ├── definitions ├── contributors ├── sources └── build_info These elements include all the data and contextual information submitted with each contributed datasets. A schema and definitions for the database are given in the file/component definitions, available within the download. The file dictionary.html provides the same information in textual format. Full details on each of these components and columns are contained within the definition. Similar information is available at http://traitecoevo.github.io/austraits.build/articles/Trait_definitions.html and http://traitecoevo.github.io/austraits.build/articles/austraits_database_structure.html. CONTRIBUTING We envision AusTraits as an on-going collaborative community resource that: Increases our collective understanding the Australian flora; and Facilitates accumulation and sharing of trait data; Builds a sense of community among contributors and users; and Aspires to fully transparent and reproducible research of the highest standard. As a community resource, we are very keen for people to contribute. Assembly of the database is managed on GitHub at traitecoevo/austraits.build. Here are some of the ways you can contribute: Reporting Errors: If you notice a possible error in AusTraits, please post an issue on GitHub. Refining documentation: We welcome additions and edits that make using the existing data or adding new data easier for the community. Contributing new data: We gladly accept new data contributions to AusTraits. See full instructions on how to contribute at http://traitecoevo.github.io/austraits.build/articles/contributing_data.html

    AusTraits, a curated plant trait database for the Australian flora

    Get PDF
    International audienceWe introduce the austraits database-a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual-and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge
    corecore