200 research outputs found

    Binding and Retrograde Transport of Leukemia Inhibitory Factor by the Sensory Nervous-System

    Get PDF
    Leukemia inhibitory factor (LIF), a peptide growth factor with multiple activities, has recently been shown to support the generation and survival of sensory neurons in cultures of mouse neural crest and dorsal root ganglia (DRG). We have conducted binding experiments with I-125-LIF on cultures of DRG to determine the receptor distribution for LIF on these cells and found that at least 60% of the sensory neurons in the cultures bound I-125-LIF, all of which could be eliminated by the addition of unlabeled LIF. The other cells in the culture, which morphologically appeared to be Schwann cells, did not bind appreciable quantities of I-125-LIF. In order to investigate whether LIF is retrogradely transported to sensory neurons in vivo, I-125-LIF was injected into the footpads and gastrocnemius muscles of newborn and adult mice, following sciatic nerve ligation. Radioactivity accumulated in the distal portion of the sciatic nerve, indicating retrograde transport of LIF. Subsequent experiments on mice with unligated sciatic nerves showed that I-125-LIF is specifically transported into the sensory neurons of the DRG. There was no apparent transport of I-125-LIF into motor neurons in the spinal cord. These experiments demonstrate that LIF can specifically bind to and be transported by sensory neurons and further support the idea that LIF acts as a target-derived neurotrophic factor, analogous to NGF

    Radiation induced angiosarcoma a sequela of radiotherapy for breast cancer following conservative surgery

    Get PDF
    Radiation induced angiosarcomas (RIA) can affect breast cancer patients who had radiotherapy following conservative breast surgery. They are very rare tumors and often their diagnosis is delayed due to their benign appearance and difficulty in differentiation from radiation induced skin changes. Therefore it is very important that clinicians are aware of their existence. We report here a case of RIA followed by discussion and review of literature

    Locked down apps versus the social media ecology : why do young people and educators disagree on the best delivery platform for digital sexual health entertainment education?

    Get PDF
    This article reports on focus groups exploring the best way to reach young men with vulgar comedy videos that provide sexual health information. Young people reported that they found the means by which the material was presented - as a locked down app - to be problematic, and that it would better be delivered through social media platforms such as YouTube. This would make it more 'spreadable'. By contrast, adult sex education stakeholders thought the material should be contained within a locked down, stand-alone app - otherwise it might be seen by children who are too young, and/or young people might misunderstand the messages. We argue that the difference in approach represented by these two sets of opinions represents a fundamental stumbling block for attempts to reach young people with digital sexual health materials, which can be understood through the prism of different cultural forms - education versus entertainment

    Chirality of Matter Shows Up via Spin Excitations

    Full text link
    Right- and left-handed circularly polarized light interact differently with electronic charges in chiral materials. This asymmetry generates the natural circular dichroism and gyrotropy, also known as the optical activity. Here we demonstrate that optical activity is not a privilege of the electronic charge excitations but it can also emerge for the spin excitations in magnetic matter. The square-lattice antiferromagnet Ba2_2CoGe2_2O7_7 offers an ideal arena to test this idea, since it can be transformed to a chiral form by application of external magnetic fields. As a direct proof of the field-induced chiral state, we observed large optical activity when the light is in resonance with spin excitations at sub-terahertz frequencies. In addition, we found that the magnetochiral effect, the absorption difference for the light beams propagating parallel and anti-parallel to the applied magnetic field, has an exceptionally large amplitude close to 100%. All these features are ascribed to the magnetoelectric nature of spin excitations as they interact both with the electric and magnetic components of light

    How Humans Differ from Other Animals in Their Levels of Morphological Variation

    Get PDF
    Animal species come in many shapes and sizes, as do the individuals and populations that make up each species. To us, humans might seem to show particularly high levels of morphological variation, but perhaps this perception is simply based on enhanced recognition of individual conspecifics relative to individual heterospecifics. We here more objectively ask how humans compare to other animals in terms of body size variation. We quantitatively compare levels of variation in body length (height) and mass within and among 99 human populations and 848 animal populations (210 species). We find that humans show low levels of within-population body height variation in comparison to body length variation in other animals. Humans do not, however, show distinctive levels of within-population body mass variation, nor of among-population body height or mass variation. These results are consistent with the idea that natural and sexual selection have reduced human height variation within populations, while maintaining it among populations. We therefore hypothesize that humans have evolved on a rugged adaptive landscape with strong selection for body height optima that differ among locations

    On the Ethics of Trade Credit: Understanding Good Payment Practice in the Supply Chain

    Get PDF
    In spite of its commercial importance and signs of clear concern in public policy arenas, trade credit has not been subjected to systematic, extended analysis in the business ethics literature, even where suppliers as a stakeholder group have been considered. This paper makes the case for serious consideration of the ethics of trade credit and explores the issues surrounding slow payment of debts. It discusses trade debt as a kind of promise, but— noting that not all promises are good ones—goes on to develop an analysis of the ethics of trade credit grounded in an understanding of its fundamental purpose. Making a distinction between ‘‘operating’’ trade credit and ‘‘financial’’ trade credit, the paper provides an account of the maximum period for which it is appropriate for one company to delay payment to another from which it has purchased goods or services. The concern of commentators and policy makers that companies should not take too long to pay their debts is affirmed, but the understanding of what timely payment means is significantly finessed, with one conclusion being that, if debts have not already been settled according to acceptable standard terms of trade, cash should pass quickly back along the supply chain once the customer in the final product market has paid. The analysis has implications not only for companies that take credit but also for external parties that seek to rate companies or set regulations according to speed of payment—an approach that is shown to be misleadingly simplistic, albeit well intentioned. A corresponding important responsibility for suppliers, not to extend excessive credit (and thus act as a quasi-bank), also follows from the analysis developed. Having provided a novel analysis of an important business problem, the paper then discusses some of the related practical issues and makes suggestions for further research

    Where the Lake Meets the Sea: Strong Reproductive Isolation Is Associated with Adaptive Divergence between Lake Resident and Anadromous Three-Spined Sticklebacks

    Get PDF
    Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean F-ST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone

    Population genomics applications for conservation: the case of the tropical dry forest dweller Peromyscus melanophrys

    Get PDF
    Recent advances in genomic sequencing have opened new horizons in the study of population genetics and evolution in non-model organisms. However, very few population genomic studies have been performed on wild mammals to understand how the landscape affects the genetic structure of populations, useful information for the conservation of biodiversity. Here, we applied a genomic approach to evaluate the relationship between habitat features and genetic patterns at spatial and temporal scales in an endangered ecosystem, the Tropical Dry Forest (TDF). We studied populations of the Plateau deer mouse Peromyscus melanophrys to analyse its genomic diversity and structure in a TDF protected area in the Huautla Mountain Range (HMR), Mexico based on 8,209 SNPs obtained through Genotyping-by-Sequencing. At a spatial scale, we found a significant signature of isolation-by-distance, few significant differences in genetic diversity indices among study sites, and no significant differences between habitats with different levels of human perturbation. At a temporal scale, while genetic diversity levels fluctuated significantly over time, neither seasonality nor disturbance levels had a significant effect. Also, outlier analysis revealed loci potentially under selection. Our results suggest that the population genetics of P. melanophrys may be little impacted by anthropogenic disturbances, or by natural spatial and temporal habitat heterogeneity in our study area. The genome-wide approach adopted here provides data of value for conservation planning, and a baseline to be used as a reference for future studies on the effects of habitat fragmentation and seasonality in the HMR and in TDF
    • …
    corecore