Right- and left-handed circularly polarized light interact differently with
electronic charges in chiral materials. This asymmetry generates the natural
circular dichroism and gyrotropy, also known as the optical activity. Here we
demonstrate that optical activity is not a privilege of the electronic charge
excitations but it can also emerge for the spin excitations in magnetic matter.
The square-lattice antiferromagnet Ba2CoGe2O7 offers an ideal arena to
test this idea, since it can be transformed to a chiral form by application of
external magnetic fields. As a direct proof of the field-induced chiral state,
we observed large optical activity when the light is in resonance with spin
excitations at sub-terahertz frequencies. In addition, we found that the
magnetochiral effect, the absorption difference for the light beams propagating
parallel and anti-parallel to the applied magnetic field, has an exceptionally
large amplitude close to 100%. All these features are ascribed to the
magnetoelectric nature of spin excitations as they interact both with the
electric and magnetic components of light