3,693 research outputs found
Projected free energies for polydisperse phase equilibria
A `polydisperse' system has an infinite number of conserved densities. We
give a rational procedure for projecting its infinite-dimensional free energy
surface onto a subspace comprising a finite number of linear combinations of
densities (`moments'), in which the phase behavior is then found as usual. If
the excess free energy of the system depends only on the moments used, exact
cloud, shadow and spinodal curves result; two- and multi-phase regions are
approximate, but refinable indefinitely by adding extra moments. The approach
is computationally robust and gives new geometrical insights into the
thermodynamics of polydispersity.Comment: 4 pages, REVTeX, uses multicol.sty and epsf.sty, 1 postscript figure
include
Quantitative measurement of sliding friction dynamics at mesoscopic scales: The lateral force apparatus
We describe an apparatus designed to quantitatively measure friction dynamics at the mesoscopic scale. This lateral force apparatus, LFA, uses double parallel leaf springs in leaf-spring units as force transducers and two focus error detection optical heads, optical heads, to measure deflections. The design of the leaf-spring units is new. Normal spring constants are in the range of 20–4000 N/m, and lateral spring constants are 7–1000 N/m. The optical heads combine a 10 nm sensitivity with a useful range of about 100 µm. The proven range of normal forces is 400 nN–150 mN. The leaf-spring units transduce friction and normal forces independently. Absolute values of normal and friction forces are calibrated. Typical errors are less than 10%. The calibration is partly in situ, for the sensitivity of the optical heads, and partly ex situ for the normal and lateral spring constants of the leaf-spring units. There is minimal coupling between the deflection measurements in the lateral and normal directions. This coupling is also calibrated in situ. It is typically 1% and can be as low as 0.25%. This means that the displacements of the tip can be measured accurately in the sliding direction and normal to the surface. Together, these characteristics make the LFA, well suited for quantitative study of friction dynamics at mesoscopic scales. Furthermore the design of the leaf-spring unit allows exchange of tips which may be fabricated (e.g., etched) from wire material (d0.4 mm) and can have customized shapes, e.g., polished flat squares. The ability of the LFA to study friction dynamics is briefly illustrated by results of stick-slip measurements on soft polymer surfaces
Properties of 3-manifolds for relativists
In canonical quantum gravity certain topological properties of 3-manifolds
are of interest. This article gives an account of those properties which have
so far received sufficient attention, especially those concerning the
diffeomorphism groups of 3-manifolds. We give a summary of these properties and
list some old and new results concerning them. The appendix contains a
discussion of the group of large diffeomorphisms of the -handle 3-manifold.Comment: 20 pages. Plain-TeX, no figures, 1 Table (A4 format
Potential uptake of dissolved organic matter by seagrasses and macroalgae
Dissolved organic nitrogen (DON) acts as a large reservoir of fixed nitrogen. Whereas DON utilization is common in the microbial community, little is known about utilization by macrophytes. We investigated the ability of the coexisting temperate marine macrophytes Zostera noltii, Cymodocea nodosa, and Caulerpa prolifera to take up nitrogen and carbon from small organic substrates of different molecular complexities (urea, glycine, L-leucine, and L-phenylalanine) and from dissolved organic matter (DOM) derived from algal and bacterial cultures (substrates with a complex composition). In addition to inorganic nitrogen, nitrogen from small organic substrates could be taken up in significant amounts by all macrophytes. Substrate uptake by the aboveground tissue differed from that of the belowground tissue. No relationships between carbon and nitrogen uptake of small organics were found. The preference for individual organic substrates was related to their structural complexity and C:N ratio. Uptake of algae-derived organic nitrogen was of similar magnitude as inorganic nitrogen, and was preferred over bacteria-derived nitrogen. These results add to the growing evidence that direct or quick indirect DON utilization may be more widespread among aquatic macrophytes than traditionally thought.This research was supported by the regional government of Andalusia project FUNDIV (P07-RNM-2516), the Spanish Project CTM2008-00012/MAR, a European Reintegration Grant (MERG-CT-2007-205675), a travel grant from Schure-Beijerinck-Popping Fund (SBP/JK/2007-32) and the Netherlands Organization for Scientific Research. Thanks to Fidel Echevarrìa Navas (Director of CACYTMAR) for granting us access to facilities, and to Bas Koutstaal for helping with sample processing. We also thank the anonymous reviewers for their valuable comments which significantly improved this manuscript
Conchological and molecular analysis of the "non-scaly" Bornean <i>Georissa</i> with descriptions of three new species (Gastropoda, Neritimorpha, Hydrocenidae)
The Bornean representatives of the genus Georissa (Hydrocenidae) have small, dextral, conical, calcareous shells consisting of ca. three teleoconch whorls. Our recent study on the Georissa of Malaysian Borneo has revealed high intra- and inter-specific variation in the "scaly" group (a group of species with striking scale-like surface sculpture). The present study on the "non-scaly" Georissa is the continuation of the species revision for the genus. The "non-scaly" species are also diverse in shell sculptures. This informal group comprises Georissa with subtle spiral and/or radial sculpture. The combination of detailed conchological usessment and molecular analyses provides clear distinctions for each of the species. Conchological, molecular, and biogeographic details are presented for 16 species of "non-scaly" Georissa. Three of these are new to science, namely Georissa corrugata sp. n., Georissa insulae sp. n., and Georissa trusmadi sp. n.</p
Model-based Aeroservoelastic Design and Load Alleviation of Large Wind Turbine Blades
This paper presents an aeroservoelastic modeling approach for dynamic load alleviation
in large wind turbines with trailing-edge aerodynamic surfaces. The tower, potentially on a
moving base, and the rotating blades are modeled using geometrically non-linear composite
beams, which are linearized around reference conditions with arbitrarily-large structural
displacements. Time-domain aerodynamics are given by a linearized 3-D unsteady vortexlattice
method and the resulting dynamic aeroelastic model is written in a state-space
formulation suitable for model reductions and control synthesis. A linear model of a single
blade is used to design a Linear-Quadratic-Gaussian regulator on its root-bending moments,
which is finally shown to provide load reductions of about 20% in closed-loop on the full
wind turbine non-linear aeroelastic model
Unicyclic Components in Random Graphs
The distribution of unicyclic components in a random graph is obtained
analytically. The number of unicyclic components of a given size approaches a
self-similar form in the vicinity of the gelation transition. At the gelation
point, this distribution decays algebraically, U_k ~ 1/(4k) for k>>1. As a
result, the total number of unicyclic components grows logarithmically with the
system size.Comment: 4 pages, 2 figure
Kinetic Anomalies in Addition-Aggregation Processes
We investigate irreversible aggregation in which monomer-monomer,
monomer-cluster, and cluster-cluster reactions occur with constant but distinct
rates K_{MM}, K_{MC}, and K_{CC}, respectively. The dynamics crucially depends
on the ratio gamma=K_{CC}/K_{MC} and secondarily on epsilon=K_{MM}/K_{MC}. For
epsilon=0 and gamma<2, there is conventional scaling in the long-time limit,
with a single mass scale that grows linearly in time. For gamma >= 2, there is
unusual behavior in which the concentration of clusters of mass k, c_k decays
as a stretched exponential in time within a boundary layer k<k* propto
t^{1-2/gamma} (k* propto ln t for gamma=2), while c_k propto t^{-2} in the bulk
region k>k*. When epsilon>0, analogous behaviors emerge for gamma<2 and gamma
>= 2.Comment: 6 pages, 2 column revtex4 format, for submission to J. Phys.
- …