Abstract

The distribution of unicyclic components in a random graph is obtained analytically. The number of unicyclic components of a given size approaches a self-similar form in the vicinity of the gelation transition. At the gelation point, this distribution decays algebraically, U_k ~ 1/(4k) for k>>1. As a result, the total number of unicyclic components grows logarithmically with the system size.Comment: 4 pages, 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 25/02/2019