413 research outputs found

    Exposure to Fumonisins and the Occurrence of Neural Tube Defects along the Texas–Mexico Border

    Get PDF
    Along the Texas–Mexico border, the prevalence of neural tube defects (NTDs) among Mexican-American women doubled during 1990–1991. The human outbreak began during the same crop year as epizootics attributed to exposure to fumonisin, a mycotoxin that often contaminates corn. Because Mexican Americans in Texas consume large quantities of corn, primarily in the form of tortillas, they may be exposed to high levels of fumonisins. We examined whether or not maternal exposure to fumonisins increases the risk of NTDs in offspring using a population-based case–control study. We estimated fumonisin exposure from a postpartum sphinganine:sphingosine (sa:so) ratio, a biomarker for fumonisin exposure measured in maternal serum, and from maternal recall of periconceptional corn tortilla intake. After adjusting for confounders, moderate (301–400) compared with low (≤ 100) consumption of tortillas during the first trimester was associated with increased odds ratios (ORs) of having an NTD-affected pregnancy (OR = 2.4; 95% confidence interval, 1.1–5.3). No increased risks were observed at intakes higher than 400 tortillas (OR = 0.8 for 401–800, OR = 1.0 for > 800). Based on the postpartum sa:so ratio, increasing levels of fumonisin exposure were associated with increasing ORs for NTD occurrences, except for the highest exposure category (sa:so > 0.35). Our findings suggest that fumonisin exposure increases the risk of NTD, proportionate to dose, up to a threshold level, at which point fetal death may be more likely to occur. These results also call for population studies that can more directly measure individual fumonisin intakes and assess effects on the developing embryo

    The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis.

    Get PDF
    Ferroptosis is a form of regulated cell death that is caused by the iron-dependent peroxidation of lipids1,2. The glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4) prevents ferroptosis by converting lipid hydroperoxides into non-toxic lipid alcohols3,4. Ferroptosis has previously been implicated in the cell death that underlies several degenerative conditions2, and induction of ferroptosis by the inhibition of GPX4 has emerged as a therapeutic strategy to trigger cancer cell death5. However, sensitivity to GPX4 inhibitors varies greatly across cancer cell lines6, which suggests that additional factors govern resistance to ferroptosis. Here, using a synthetic lethal CRISPR-Cas9 screen, we identify ferroptosis suppressor protein 1 (FSP1) (previously known as apoptosis-inducing factor mitochondrial 2 (AIFM2)) as a potent ferroptosis-resistance factor. Our data indicate that myristoylation recruits FSP1 to the plasma membrane where it functions as an oxidoreductase that reduces coenzyme Q10 (CoQ) (also known as ubiquinone-10), which acts as a lipophilic radical-trapping antioxidant that halts the propagation of lipid peroxides. We further find that FSP1 expression positively correlates with ferroptosis resistance across hundreds of cancer cell lines, and that FSP1 mediates resistance to ferroptosis in lung cancer cells in culture and in mouse tumour xenografts. Thus, our data identify FSP1 as a key component of a non-mitochondrial CoQ antioxidant system that acts in parallel to the canonical glutathione-based GPX4 pathway. These findings define a ferroptosis suppression pathway and indicate that pharmacological inhibition of FSP1 may provide an effective strategy to sensitize cancer cells to ferroptosis-inducing chemotherapeutic agents

    Viewpoints on Factors for Successful Employment for Adults with Autism Spectrum Disorder

    Get PDF
    This article explores the key factors for successful employment from the viewpoints of adults with autism spectrum disorder (ASD) and employers. Two groups of individuals participated in this study, 40 adults with ASD and 35 employers. Q method was used to understand and contrast the viewpoints of the two groups. Data were analysed using by-person varimax rotation factor analysis. Results showed that although both groups appear committed to the employment process, the difference in their understanding regarding the type of workplace support required, job expectations and productivity requirements continues to hinder successful employment. These results highlight the need to facilitate communication between employees and employers to ensure a clear understanding of the needs of both groups are met. The use of an ASD-specific workplace tool may assist in facilitating the necessary communication between these two groups

    Lime pretreatment of sugar beet pulp and evaluation of synergy between ArfA, ManA and XynA from Clostridium cellulovorans on the pretreated substrate

    Get PDF
    Sugar beet pulp (SBP) is a waste product from the sugar beet industry and could be used as a potential biomass feedstock for second generation biofuel technology. Pretreatment of SBP with ‘slake lime’ (calcium hydroxide) was investigated using a 23 factorial design and the factors examined included lime loading, temperature and time. The pretreatment was evaluated for its ability to enhance enzymatic degradation using a combination of three hemicellulases, namely ArfA (an arabinofuranosidase), ManA (an endo-mannanase) and XynA (an endo-xylanase) from C. cellulovorans to determine the conditions under which optimal activity was facilitated. Optimal pretreatment conditions were found to be 0.4 g lime/g SBP, with 36 h digestion at 40 °C. The synergistic interactions between ArfA, ManA and XynA from C. cellulovorans were subsequently investigated on the pretreated SBP. The highest degree of synergy was observed at a protein ratio of 75% ArfA to 25% ManA, with a specific activity of 2.9 U/g protein. However, the highest activity was observed at 4.2 U/g protein at 100% ArfA. This study demonstrated that lime treatment enhanced enzymatic hydrolysis of SBP. The ArfA was the most effective hemicellulase for release of sugars from pretreated SBP, but the synergy with the ManA indicated that low levels of mannan in SBP were probably masking the access of the ArfA to its substrate. XynA displayed no synergy with the other two hemicellulases, indicating that the xylan in the SBP was not hampering the access of ArfA or ManA to their substrates and was not closely associated with the mannan and arabinan in the SBP

    Nociceptive Afferents to the Premotor Neurons That Send Axons Simultaneously to the Facial and Hypoglossal Motoneurons by Means of Axon Collaterals

    Get PDF
    It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR) responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG) or FG/tetramethylrhodamine-dextran amine (TMR-DA) were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the caudal spinal trigeminal nucleus (Vc). The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt), dorsal and ventral medullary reticular formation (MdD, MdV), supratrigeminal nucleus (Vsup) and parabrachial nucleus (PBN) with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP) was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals

    Perceived and objective neighborhood support for outside of school physical activity in South African children.

    Get PDF
    The neighborhood environment has the potential to influence children's participation in physical activity. However, children's outdoor play is controlled by parents to a great extent. This study aimed to investigate whether parents' perceptions of the neighborhood environment and the objectively measured neighborhood environment were associated with children's moderate-to-vigorous intensity physical activity (MVPA) outside of school hours; and to determine if these perceptions and objective measures of the neighborhood environment differ between high and low socio-economic status (SES) groups.In total, 258 parents of 9-11 year-old children, recruited from the South African sample of the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE), completed a questionnaire concerning the family and neighborhood environment. Objective measures of the environment were also obtained using Geographic Information Systems (GIS). Children wore an Actigraph (GT3X+) accelerometer for 7 days to measure levels of MVPA. Multilevel regression models were used to determine the association between the neighborhood environment and MVPA out of school hours.Parents' perceptions of the neighborhood physical activity facilities were positively associated with children's MVPA before school (β = 1.50 ± 0.51, p = 0.003). Objective measures of neighborhood safety and traffic risk were associated with children's after-school MVPA (β = -2.72 ± 1.35, p = 0.044 and β = -2.63 ± 1.26, p = 0.038, respectively). These associations were significant in the low SES group (β = -3.38 ± 1.65, p = 0.040 and β = -3.76 ± 1.61, p = 0.020, respectively), but unrelated to MVPA in the high SES group.This study found that several of the objective measures of the neighborhood environment were significantly associated with children's outside-of-school MVPA, while most of the parents' perceptions of the neighborhood environment were unrelated

    Pre-Fibrillar α-Synuclein Mutants Cause Parkinson's Disease-Like Non-Motor Symptoms in Drosophila

    Get PDF
    Parkinson's disease (PD) is linked to the formation of insoluble fibrillar aggregates of the presynaptic protein α-Synuclein (αS) in neurons. The appearance of such aggregates coincides with severe motor deficits in human patients. These deficits are often preceded by non-motor symptoms such as sleep-related problems in the patients. PD-like motor deficits can be recapitulated in model organisms such as Drosophila melanogaster when αS is pan-neurally expressed. Interestingly, both these deficits are more severe when αS mutants with reduced aggregation properties are expressed in flies. This indicates that that αS aggregation is not the primary cause of the PD-like motor symptoms. Here we describe a model for PD in Drosophila which utilizes the targeted expression of αS mutants in a subset of dopadecarboxylase expressing serotonergic and dopaminergic (DA) neurons. Our results show that targeted expression of pre-fibrillar αS mutants not only recapitulates PD-like motor symptoms but also the preceding non-motor symptoms such as an abnormal sleep-like behavior, altered locomotor activity and abnormal circadian periodicity. Further, the results suggest that the observed non-motor symptoms in flies are caused by an early impairment of neuronal functions rather than by the loss of neurons due to cell death

    A new implicit review instrument for measuring quality of care delivered to pediatric patients in the emergency department

    Get PDF
    BackgroundThere are few outcomes experienced by children receiving care in the Emergency Department (ED) that are amenable to measuring for the purposes of assessing of quality of care. The purpose of this study was to develop, test, and validate a new implicit review instrument that measures quality of care delivered to children in EDs.MethodsWe developed a 7-point structured implicit review instrument that encompasses four aspects of care, including the physician's initial data gathering, integration of information and development of appropriate diagnoses; initial treatment plan and orders; and plan for disposition and follow-up. Two pediatric emergency medicine physicians applied the 5-item instrument to children presenting in the highest triage category to four rural EDs, and we assessed the reliability of the average summary scores (possible range of 5-35) across the two reviewers using standard measures. We also validated the instrument by comparing this mean summary score between those with and without medication errors (ascertained independently by two pharmacists) using a two-sample t-test.ResultsWe reviewed the medical records of 178 pediatric patients for the study. The mean and median summary score for this cohort of patients were 27.4 and 28.5, respectively. Internal consistency was high (Cronbach's alpha of 0.92 and 0.89). All items showed a significant (p < 0.005) positive correlation between reviewers using the Spearman rank correlation (range 0.24 to 0.39). Exact agreement on individual items between reviewers ranged from 70.2% to 85.4%. The Intra-class Correlation Coefficient for the mean of the total summary score across the two reviewers was 0.65. The validity of the instrument was supported by the finding of a higher score for children without medication errors compared to those with medication errors which trended toward significance (mean score = 28.5 vs. 26.0, p = 0.076).ConclusionThe instrument we developed to measure quality of care provided to children in the ED has high internal consistency, fair to good inter-rater reliability and inter-rater correlation, and high content validity. The validity of the instrument is supported by the fact that the instrument's average summary score was lower in the presence of medication errors, which trended towards statistical significance

    A neural tracking and motor control approach to improve rehabilitation of upper limb movements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Restoration of upper limb movements in subjects recovering from stroke is an essential keystone in rehabilitative practices. Rehabilitation of arm movements, in fact, is usually a far more difficult one as compared to that of lower extremities. For these reasons, researchers are developing new methods and technologies so that the rehabilitative process could be more accurate, rapid and easily accepted by the patient. This paper introduces the proof of concept for a new non-invasive FES-assisted rehabilitation system for the upper limb, called smartFES (sFES), where the electrical stimulation is controlled by a biologically inspired neural inverse dynamics model, fed by the kinematic information associated with the execution of a planar goal-oriented movement. More specifically, this work details two steps of the proposed system: an <it>ad hoc </it>markerless motion analysis algorithm for the estimation of kinematics, and a neural controller that drives a synthetic arm. The vision of the entire system is to acquire kinematics from the analysis of video sequences during planar arm movements and to use it together with a neural inverse dynamics model able to provide the patient with the electrical stimulation patterns needed to perform the movement with the assisted limb.</p> <p>Methods</p> <p>The markerless motion tracking system aims at localizing and monitoring the arm movement by tracking its silhouette. It uses a specifically designed motion estimation method, that we named Neural Snakes, which predicts the arm contour deformation as a first step for a silhouette extraction algorithm. The starting and ending points of the arm movement feed an Artificial Neural Controller, enclosing the muscular Hill's model, which solves the inverse dynamics to obtain the FES patterns needed to move a simulated arm from the starting point to the desired point. Both position error with respect to the requested arm trajectory and comparison between curvature factors have been calculated in order to determine the accuracy of the system.</p> <p>Results</p> <p>The proposed method has been tested on real data acquired during the execution of planar goal-oriented arm movements. Main results concern the capability of the system to accurately recreate the movement task by providing a synthetic arm model with the stimulation patterns estimated by the inverse dynamics model. In the simulation of movements with a length of ± 20 cm, the model has shown an unbiased angular error, and a mean (absolute) position error of about 1.5 cm, thus confirming the ability of the system to reliably drive the model to the desired targets. Moreover, the curvature factors of the factual human movements and of the reconstructed ones are similar, thus encouraging future developments of the system in terms of reproducibility of the desired movements.</p> <p>Conclusion</p> <p>A novel FES-assisted rehabilitation system for the upper limb is presented and two parts of it have been designed and tested. The system includes a markerless motion estimation algorithm, and a biologically inspired neural controller that drives a biomechanical arm model and provides the stimulation patterns that, in a future development, could be used to drive a smart Functional Electrical Stimulation system (sFES). The system is envisioned to help in the rehabilitation of post stroke hemiparetic patients, by assisting the movement of the paretic upper limb, once trained with a set of movements performed by the therapist or in virtual reality. Future work will include the application and testing of the stimulation patterns in real conditions.</p

    A Conserved Behavioral State Barrier Impedes Transitions between Anesthetic-Induced Unconsciousness and Wakefulness: Evidence for Neural Inertia

    Get PDF
    One major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states. General anesthetics offer a controllable means to study these transitions. Induction of anesthesia is commonly attributed to drug-induced global modulation of neuronal function, while emergence from anesthesia has been thought to occur passively, paralleling elimination of the anesthetic from its sites in the central nervous system (CNS). If this were true, then CNS anesthetic concentrations on induction and emergence would be indistinguishable. By generating anesthetic dose-response data in both insects and mammals, we demonstrate that the forward and reverse paths through which anesthetic-induced unconsciousness arises and dissipates are not identical. Instead they exhibit hysteresis that is not fully explained by pharmacokinetics as previously thought. Single gene mutations that affect sleep-wake states are shown to collapse or widen anesthetic hysteresis without obvious confounding effects on volatile anesthetic uptake, distribution, or metabolism. We propose a fundamental and biologically conserved concept of neural inertia, a tendency of the CNS to resist behavioral state transitions between conscious and unconscious states. We demonstrate that such a barrier separates wakeful and anesthetized states for multiple anesthetics in both flies and mice, and argue that it contributes to the hysteresis observed when the brain transitions between conscious and unconscious states
    corecore