78 research outputs found

    Probabilistic Analysis of Earthquake-Induced Pool Release

    Get PDF
    Wappapello Dam was constructed in 1938 near the New Madrid seismic region. Loose sands in the dam foundation led to concern for liquefaction and embankment sliding if a large earthquake were to occur. However it was also recognized that the operation of the dam for flood control results in relatively low reservoir levels the majority of the time, substantially reducing the risk of earthquake-induced flooding. Because of these factors, a probabilistic analysis was performed to assess the likelihood of the combination of required events leading to an earthquake-induced pool release. Results of such analyses provide better information on which to make both quantitative and qualitative judgements regarding remedial action

    Guidance on date marking and related food information: part 2 (food information)

    Get PDF
    A risk-based approach was used to develop guidance to be followed by food business operators (FBOs) when deciding on food information relating to storage conditions and/or time limits for consumption after opening a food package and thawing of frozen foods. After opening the package, contamination may occur, introducing new pathogens into the food and the intrinsic (e.g. pH and aw), extrinsic (e.g. temperature and gas atmosphere) and implicit (e.g. interactions with competing background microbiota) factors may change, affecting microbiological food safety. Setting a time limit for consumption after opening the package (secondary shelf-life) is complex in view of the many influencing factors and information gaps. A decision tree (DT) was developed to assist FBOs in deciding whether the time limit for consumption after opening, due to safety reasons, is potentially shorter than the initial ‘best before’ or ‘use by’ date of the product in its unopened package. For products where opening the package leads to a change of the type of pathogenic microorganisms present in the food and/or factors increasing their growth compared to the unopened product, a shorter time limit for consumption after opening would be appropriate. Freezing prevents the growth of pathogens, however, most pathogenic microorganisms may survive frozen storage, recover during thawing and then grow and/or produce toxins in the food, if conditions are favourable. Moreover, additional contamination may occur from hands, contact surfaces or contamination from other foods and utensils. Good practices for thawing should, from a food safety point of view, minimise growth of and contamination by pathogens between the food being thawed and other foods and/or contact surfaces, especially when removing the food from the package during thawing. Best practices for thawing foods are presented to support FBOs

    Effect of Intraduodenal Bile and Na-Taurodeoxycholate on Exocrine Pancreatic Secretion and on Plasma Levels of Secretin, Pancreatic Polypeptide, and Gastrin in Man

    Get PDF
    The effect of intraduodenally administered cattle bile (CB) and Na-taurodeoxycholate (TDC) on basal pancreatic secretion and plasma levels of secretin, pancreatic polypeptide (PP), and gastrin were investigated on two separate days in 10 fasting volunteers. Doses of 2-6 g CB and 20&600 mg TDC were given intraduodenally at 65-min intervals. Volume, bicarbonate, lipase, trypsin, amylase, and bilirubin were measured in 10-min fractions of duodenal juice, and GI peptides determined by radioimmunoassay. CB and TDC enhanced significantly and dose-dependently volume, bicarbonate and enzyme secretion, and plasma secretin and PP levels. In contrast, plasma gastrin showed only a marginal increase. We conclude that the hydrokinetic effect of intraduodenal CB and TDC is at least partially mediated by secretin. Gastrin could be ruled out as a mediator of the ecbolic effect, whereas other GI peptides, primarily CCK, and/or neural mechanisms must be considered possible mediators. Both pathways may also play a role in the PP release

    Nucleon-deuteron elastic scattering as a tool to probe properties of three-nucleon forces

    Get PDF
    Faddeev equations for elastic Nd scattering have been solved using modern NN forces combined with the Tucson-Melbourne two-pion exchange three-nucleon force, with a modification thereof closer to chiral symmetry and the Urbana IX three-nucleon force. Theoretical predictions for the differential cross section and several spin observables using NN forces only and NN forces combined with three-nucleon force models are compared to each other and to the existing data. A wide range of energies from 3 to 200 MeV is covered. Especially at the higher energies striking three-nucleon force effects are found, some of which are supported by the still rare set of data, some are in conflict with data and thus very likely point to defects in those three-nucleon force models.Comment: 30 pages, 14 Postscript figures; now minor changes in figures and reference

    Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup: Predictions of Current Models (I)

    Get PDF
    An extensive study of three-nucleon force effects in the entire phase space of the nucleon-deuteron breakup process, for energies from above the deuteron breakup threshold up to 200 MeV, has been performed. 3N Faddeev equations have been solved rigorously using the modern high precision nucleon-nucleon potentials AV18, CD Bonn, Nijm I, II and Nijm 93, and also adding 3N forces. We compare predictions for cross sections and various polarization observables when NN forces are used alone or when the two pion-exchange Tucson-Melbourne 3NF was combined with each of them. In addition AV18 was combined with the Urbana IX 3NF and CD Bonn with the TM' 3NF, which is a modified version of the TM 3NF, more consistent with chiral symmetry. Large but generally model dependent 3NF effects have been found in certain breakup configurations, especially at the higher energies, both for cross sections and spin observables. These results demonstrate the usefulness of the kinematically complete breakup reaction in testing the proper structure of 3N forces.Comment: 42 pages, 20 ps figures, 2 gif figure

    Public health risks associated with food‐borne parasites

    Get PDF
    Parasites are important food-borne pathogens. Their complex lifecycles, varied transmission routes, and prolonged periods between infection and symptoms mean that the public health burden and relative importance of different transmission routes are often difficult to assess. Furthermore, there are challenges in detection and diagnostics, and variations in reporting. A Europe-focused ranking exercise, using multicriteria decision analysis, identified potentially food-borne parasites of importance, and that are currently not routinely controlled in food. These are Cryptosporidium spp., Toxoplasma gondii and Echinococcus spp. Infection with these parasites in humans and animals, or their occurrence in food, is not notifiable in all Member States. This Opinion reviews current methods for detection, identification and tracing of these parasites in relevant foods, reviews literature on food-borne pathways, examines information on their occurrence and persistence in foods, and investigates possible control measures along the food chain. The differences between these three parasites are substantial, but for all there is a paucity of well-established, standardised, validated methods that can be applied across the range of relevant foods. Furthermore, the prolonged period between infection and clinical symptoms (from several days for Cryptosporidium to years for Echinococcus spp.) means that source attribution studies are very difficult. Nevertheless, our knowledge of the domestic animal lifecycle (involving dogs and livestock) for Echinoccocus granulosus means that this parasite is controllable. For Echinococcus multilocularis, for which the lifecycle involves wildlife (foxes and rodents), control would be expensive and complicated, but could be achieved in targeted areas with sufficient commitment and resources. Quantitative risk assessments have been described for Toxoplasma in meat. However, for T.gondii and Cryptosporidium as faecal contaminants, development of validated detection methods, including survival/infectivity assays and consensus molecular typing protocols, are required for the development of quantitative risk assessments and efficient control measures

    Mutation Rates of TGFBR2 and ACVR2 Coding Microsatellites in Human Cells with Defective DNA Mismatch Repair

    Get PDF
    Microsatellite instability promotes colonic tumorigenesis through generating frameshift mutations at coding microsatellites of tumor suppressor genes, such as TGFBR2 and ACVR2. As a consequence, signaling through these TGFβ family receptors is abrogated in DNA Mismatch repair (MMR)-deficient tumors. How these mutations occur in real time and mutational rates of these human coding sequences have not previously been studied. We utilized cell lines with different MMR deficiencies (hMLH1−/−, hMSH6−/−, hMSH3−/−, and MMR-proficient) to determine mutation rates. Plasmids were constructed in which exon 3 of TGFBR2 and exon 10 of ACVR2 were cloned +1 bp out of frame, immediately after the translation initiation codon of an enhanced GFP (EGFP) gene, allowing a −1 bp frameshift mutation to drive EGFP expression. Mutation-resistant plasmids were constructed by interrupting the coding microsatellite sequences, preventing frameshift mutation. Stable cell lines were established containing portions of TGFBR2 and ACVR2, and nonfluorescent cells were sorted, cultured for 7–35 days, and harvested for flow cytometric mutation detection and DNA sequencing at specific time points. DNA sequencing revealed a −1 bp frameshift mutation (A9 in TGFBR2 and A7 in ACVR2) in the fluorescent cells. Two distinct fluorescent populations, M1 (dim, representing heteroduplexes) and M2 (bright, representing full mutants) were identified, with the M2 fraction accumulating over time. hMLH1 deficiency revealed 11 (5.91×10−4) and 15 (2.18×10−4) times higher mutation rates for the TGFBR2 and ACVR2 microsatellites compared to hMSH6 deficiency, respectively. The mutation rate of the TGFBR2 microsatellite was ∼3 times higher in both hMLH1 and hMSH6 deficiencies than the ACVR2 microsatellite. The −1 bp frameshift mutation rates of TGFBR2 and ACVR2 microsatellite sequences are dependent upon the human MMR background

    Impact of therapy on quality of life, neurocognitive function and their correlates in glioblastoma multiforme: a review

    Get PDF
    The maintenance of quality of life (QoL) in patients with high-grade glioma is an important endpoint during treatment, particularly in those with glioblastoma multiforme (GBM) given its dismal prognosis despite limited advances in standard therapy. It has proven difficult to identify new therapies that extend survival in patients with recurrent GBM, so one of the primary aims of new therapies is to reduce morbidity, restore or preserve neurologic functions, and the capacity to perform daily activities. Apart from temozolomide, cytotoxic chemotherapeutic agents do not appear to significantly impact response or survival, but produce toxicity that is likely to negatively impact QoL. New biological agents, such as bevacizumab, can induce a clinically meaningful proportion of durable responses among patients with recurrent GBM with an acceptable safety profile. Emerging evidence suggests that bevacizumab produces an improvement or preservation of neurocognitive function in GBM patients, suggestive of QoL improvement, in most poor-prognosis patients who would otherwise be expected to show a sudden and rapid deterioration in QoL

    Activin signaling as an emerging target for therapeutic interventions

    Get PDF
    After the initial discovery of activins as important regulators of reproduction, novel and diverse roles have been unraveled for them. Activins are expressed in various tissues and have a broad range of activities including the regulation of gonadal function, hormonal homeostasis, growth and differentiation of musculoskeletal tissues, regulation of growth and metastasis of cancer cells, proliferation and differentiation of embryonic stem cells, and even higher brain functions. Activins signal through a combination of type I and II transmembrane serine/threonine kinase receptors. Activin receptors are shared by multiple transforming growth factor-β (TGF-β) ligands such as myostatin, growth and differentiation factor-11 and nodal. Thus, although the activity of each ligand is distinct, they are also redundant, both physiologically and pathologically in vivo. Activin receptors activated by ligands phosphorylate the receptor-regulated Smads for TGF-β, Smad2 and 3. The Smad proteins then undergo multimerization with the co-mediator Smad4, and translocate into the nucleus to regulate the transcription of target genes in cooperation with nuclear cofactors. Signaling through receptors and Smads is controlled by multiple mechanisms including phosphorylation and other posttranslational modifications such as sumoylation, which affect potein localization, stability and transcriptional activity. Non-Smad signaling also plays an important role in activin signaling. Extracellularly, follistatin and related proteins bind to activins and related TGF-β ligands, and control the signaling and availability of ligands
    corecore