16 research outputs found

    Mass Spectrometric Mapping of the DNA Adductome as a Means to Study Genotoxin Exposure, Metabolism, and Effect.

    Get PDF
    Covalent binding of endo- or exogenous chemicals to DNA results in the formation of DNA adducts which are reflective of exposure of the human body to DNA-damaging molecules and their metabolic pathways. The study of DNA adduct types and levels in human tissue therefore offers an interesting tool in several fields of research, including toxicology and cancer epidemiology. Over the years, a range of techniques and methods have been developed to study the formation of endo- and exogenous DNA adducts. However, for the simultaneous detection, identification and quantification of both known and unknown DNA adducts, mass spectrometry (MS) is deemed to be the most promising technique. In this perspective, we focus on the analysis of multiple DNA adducts within a sample with the emphasis on untargeted analysis. The advantageous use of MS methodologies for DNA adductome mapping is discussed comprehensively with relevant field examples. In addition, several aspects of study design, sample pretreatment, and analysis are addressed as these factors significantly affect the reliability of DNA adductomics studies

    The preclinical pharmacology of the high affinity anti-IL-6R Nanobody (R) ALX-0061 supports its clinical development in rheumatoid arthritis

    Get PDF
    Introduction: The pleiotropic cytokine interleukin-6 (IL-6) plays an important role in the pathogenesis of different diseases, including rheumatoid arthritis (RA). ALX-0061 is a bispecific Nanobody (R) with a high affinity and potency for IL-6 receptor (IL-6R), combined with an extended half-life by targeting human serum albumin. We describe here the relevant aspects of its in vitro and in vivo pharmacology. Methods: ALX-0061 is composed of an affinity-matured IL-6R-targeting domain fused to an albumin-binding domain representing a minimized two-domain structure. A panel of different in vitro assays was used to characterize the biological activities of ALX-0061. The pharmacological properties of ALX-0061 were examined in cynomolgus monkeys, using plasma levels of total soluble (s)IL-6R as pharmacodynamic marker. Therapeutic effect was evaluated in a human IL-6-induced acute phase response model in the same species, and in a collagen-induced arthritis (CIA) model in rhesus monkeys, using tocilizumab as positive control. Results: ALX-0061 was designed to confer the desired pharmacological properties. A 200-fold increase of target affinity was obtained through affinity maturation of the parental domain. The high affinity for sIL-6R (0.19 pM) translated to a concentration-dependent and complete neutralization of sIL-6R in vitro. In cynomolgus monkeys, ALX-0061 showed a dose-dependent and complete inhibition of hIL-6-induced inflammatory parameters, including plasma levels of C-reactive protein (CRP), fibrinogen and platelets. An apparent plasma half-life of 6.6 days was observed after a single intravenous administration of 10 mg/kg ALX-0061 in cynomolgus monkeys, similar to the estimated expected half-life of serum albumin. ALX-0061 and tocilizumab demonstrated a marked decrease in serum CRP levels in a non-human primate CIA model. Clinical effect was confirmed in animals with active drug exposure throughout the study duration. Conclusions: ALX-0061 represents a minimized bispecific biotherapeutic of 26 kDa, nearly six times smaller than monoclonal antibodies. High in vitro affinity and potency was demonstrated. Albumin binding as a half-life extension technology resulted in describable and expected pharmacokinetics. Strong IL-6R engagement was shown to translate to in vivo effect in non-human primates, demonstrated via biomarker deregulation as well as clinical effect. Presented results on preclinical pharmacological properties of ALX-0061 are supportive of clinical development in RA

    Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies

    Get PDF
    The life sciences are currently being transformed by an unprecedented wave of developments in molecular analysis, which include important advances in instrumental analysis as well as biocomputing. In light of the central role played by metabolism in nutrition, metabolomics is rapidly being established as a key analytical tool in human nutritional studies. Consequently, an increasing number of nutritionists integrate metabolomics into their study designs. Within this dynamic landscape, the potential of nutritional metabolomics (nutrimetabolomics) to be translated into a science, which can impact on health policies, still needs to be realized. A key element to reach this goal is the ability of the research community to join, to collectively make the best use of the potential offered by nutritional metabolomics. This article, therefore, provides a methodological description of nutritional metabolomics that reflects on the state‐of‐the‐art techniques used in the laboratories of the Food Biomarker Alliance (funded by the European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL)) as well as points of reflections to harmonize this field. It is not intended to be exhaustive but rather to present a pragmatic guidance on metabolomic methodologies, providing readers with useful "tips and tricks" along the analytical workflow

    Disparities in the gut metabolome of post-operative Hirschsprung's disease patients

    No full text
    Hirschsprung's disease (HD) is a congenital structural abnormality of the colon seen in approximately 1 to 5000 live births. Despite surgical correction shortly after presentation, up to 60% of patients will express long-term gastrointestinal complaints, including potentially life-threatening Hirschsprung-associated enterocolitis (HAEC). In this study fecal samples from postoperative HD patients (n = 38) and their healthy siblings (n = 21) were analysed using high-resolution liquid chromatography-mass spectrometry aiming to further unravel the nature of the chronic gastrointestinal disturbances. Furthermore, within the patient group, we compared the faecal metabolome between patients with and without a history of HAEC as well as those diagnosed with short or long aganglionic segment. Targeted analysis identified several individual metabolites characteristic for all HD patients as well as those with a history of HAEC and long segment HD. Moreover, multivariate models based on untargeted data established statistically significant (p < 0.05) differences in comprehensive faecal metabolome in the patients' cohort as a whole and in patients with a history of HAEC. Pathway analysis revealed the most impact on amino sugar, lysine, sialic acid, hyaluronan and heparan sulphate metabolism in HD, as well as impaired tyrosine metabolism in HAEC group. Those changes imply disruption of intestinal mucosal barrier due to glycosaminoglycan breakdown and dysbiosis as major metabolic changes in patients' group and should be further explored for potential diagnostic or treatment targets

    Valorisation of tainted boar meat in patties, frankfurter sausages and cooked ham by means of targeted dilution, cooking and smoking

    No full text
    Because of the need to abolish the castration of piglets without anaesthesia/analgesia, the pig industry is searching for a mode of action for the valorisation of meat with boar taint, an off-odour in entire male pigs. Carcasses with boar taint were selected by means of sensory and chemical analysis, after which patties with different levels of tainted boar meat were produced, as well as cooked ham and Frankfurter sausages using different smoke condensates and cooking temperatures. For these products orthonasal and retronasal boar taint odour were assessed by a trained expert panel. The results offer guidance regarding dilution of tainted meat (with = 37 mu g/kg skatole) and the potential application of smoke condensates (e.g., Rudinsmoke C for sausages and Smokez LFBN for ham) as promising boar taint masking strategies

    FLEXiGUT : rationale for exposomics associations with chronic low-grade gut inflammation

    No full text
    FLEXiGUT is the first large-scale exposomics study focused on chronic low-grade inflammation. It aims to characterize human life course environmental exposure to assess and validate its impact on gut inflammation and related biological processes and diseases. The cumulative influences of environmental and food contaminants throughout the lifespan on certain biological responses related to chronic gut inflammation will be investigated in two Flemish prospective cohorts, namely the "ENVIRONAGE birth cohort", which provides follow-up from gestation to early childhood, and the "Flemish Gut Flora Project longitudinal cohort", a cohort of adults. The exposome will be characterised through biomonitoring of legacy and emerging contaminants, mycotoxins and markers of air pollution, by analysing the available metadata on nutrition, location and activity, and by applying state-of-the-art-omics techniques, including metagenomics, metabolomics and DNA adductomics, as well as the assessment of telomere length and measurement of inflammatory markers, to encompass both exposure and effect. Associations between exposures and health outcomes will be uncovered using an integrated-omics data analysis framework comprising data exploration, pre-processing, dimensionality reduction and data mining, combined with machine learning-based pathway analysis approaches. This is expected to lead to a more profound insight in mechanisms underlying disease progression (e.g. metabolic disorders, food allergies, gastrointestinal cancers) and/or accelerated biological ageing
    corecore