226 research outputs found

    Breaking silences and upholding confidences: responding to HIV in the Lihir Islands, Papua New Guinea

    Get PDF
    Various forms of silence are understood to characterize the response to HIV/AIDS in the Lihir Islands in Papua New Guinea. While some efforts have been made to prevent HIV and educate residents, these seem not to have been in proportion to its classification as a high-risk setting for transmission, given social factors associated with the Lihir gold mine. Confidentiality is both practiced yet critiqued in Lihir as another form of silencing that detracts from efforts to emphasize the serious nature of HIV, promote its prevention, and care for those who live with it. 'Breaking the silence' has come to be seen as key to preventing HIV in Lihir, yet while certain silences are acknowledged, others have escaped scrutiny.Susan R. Heme

    Global-scale changes to extreme ocean wave events due to anthropogenic warming

    Get PDF
    Extreme surface ocean waves are often primary drivers of coastal flooding and erosion over various time scales. Hence, understanding future changes in extreme wave events owing to global warming is of socio-economic and environmental significance. However, our current knowledge of potential changes in high-frequency (defined here as having return periods of less than 1 year) extreme wave events are largely unknown, despite being strongly linked to coastal hazards across time scales relevant to coastal management. Here, we present global climate-modeling evidence, based on the most comprehensive multi-method, multi-model wave ensemble, of projected changes in a core set of extreme wave indices describing high-frequency, extra-tropical storm-driven waves. We find changes in high-frequency extreme wave events of up to ∼50%-100% under RCP8.5 high-emission scenario; which is nearly double the expected changes for RCP4.5 scenario, when globally integrated. The projected changes exhibit strong inter-hemispheric asymmetry, with strong increases in extreme wave activity across the tropics and high latitudes of the Southern Hemisphere region, and a widespread decrease across most of the Northern Hemisphere. We find that the patterns of projected increase across these extreme wave events over the Southern Hemisphere region resemble their historical response to the positive anomaly of the Southern Annular Mode. Our findings highlight that many countries with low-adaptive capacity are likely to face increasing exposure to much more frequent extreme wave events in the future

    Natural hazards in Australia : sea level and coastal extremes

    Get PDF
    The Australian coastal zone encompasses tropical, sub- and extra-tropical climates and accommodates about 80 % of Australia’s population. Sea level extremes and their physical impacts in the coastal zone arise from a complex set of atmospheric, oceanic and terrestrial processes that interact on a range of spatial and temporal scales and will be modified by a changing climate, including sea level rise. This review details significant progress over recent years in understanding the causes of past and projections of future changes in sea level and coastal extremes, yet a number of research questions, knowledge gaps and challenges remain. These include efforts to improve knowledge on past sea level extremes, integrate a wider range of processes in projections of future changes to sea level extremes, and focus efforts on understanding long-term coastline response from the combination of contributing factors

    Uncertainty and Bias in Global to Regional Scale Assessments of Current and Future Coastal Flood Risk

    Get PDF
    This study provides a literature-based comparative assessment of uncertainties and biases in global to world-regional scale assessments of current and future coastal flood risks, considering mean and extreme sea-level hazards, the propagation of these into the floodplain, people and coastal assets exposed, and their vulnerability. Globally, by far the largest bias is introduced by not considering human adaptation, which can lead to an overestimation of coastal flood risk in 2100 by up to factor 1300. But even when considering adaptation, uncertainties in how coastal societies will adapt to sea-level rise dominate with a factor of up to 27 all other uncertainties. Other large uncertainties that have been quantified globally are associated with socio-economic development (factors 2.3–5.8), digital elevation data (factors 1.2–3.8), ice sheet models (factor 1.6–3.8) and greenhouse gas emissions (factors 1.6–2.1). Local uncertainties that stand out but have not been quantified globally, relate to depth-damage functions, defense failure mechanisms, surge and wave heights in areas affected by tropical cyclones (in particular for large return periods), as well as nearshore interactions between mean sea-levels, storm surges, tides and waves. Advancing the state-of-the-art requires analyzing and reporting more comprehensively on underlying uncertainties, including those in data, methods and adaptation scenarios. Epistemic uncertainties in digital elevation, coastal protection levels and depth-damage functions would be best reduced through open community-based efforts, in which many scholars work together in collecting and validating these data

    Robustness and uncertainties in global multivariate wind-wave climate projections

    Get PDF
    Understanding climate-driven impacts on the multivariate global wind-wave climate is paramount to effective offshore/coastal climate adaptation planning. However, the use of single-method ensembles and variations arising from different methodologies has resulted in unquantified uncertainty amongst existing global wave climate projections. Here, assessing the first coherent, community-driven, multi-method ensemble of global wave climate projections, we demonstrate widespread ocean regions with robust changes in annual mean significant wave height and mean wave period of 5–15% and shifts in mean wave direction of 5–15°, under a high-emission scenario. Approximately 50% of the world’s coastline is at risk from wave climate change, with ~40% revealing robust changes in at least two variables. Furthermore, we find that uncertainty in current projections is dominated by climate model-driven uncertainty, and that single-method modelling studies are unable to capture up to ~50% of the total associated uncertainty

    Global ocean wave fields show consistent regional trends between 1980 and 2014 in a multi-product ensemble

    Get PDF
    Historical trends in the direction and magnitude of ocean surface wave height, period, or direction are debated due to diverse data, time-periods, or methodologies. Using a consistent community-driven ensemble of global wave products, we quantify and establish regions with robust trends in global multivariate wave fields between 1980 and 2014. We find that about 30-40% of the global ocean experienced robust seasonal trends in mean and extreme wave height, period, and direction. Most of the Southern Hemisphere exhibited strong upward-trending wave heights (1-2 cm per year) and periods during winter and summer. Ocean basins with robust positive trends are far larger than those with negative trends. Historical trends calculated over shorter periods generally agree with satellite records but vary from product to product, with some showing a consistently negative bias. Variability in trends across products and time-periods highlights the importance of considering multiple sources when seeking robust change analyses

    A global ensemble of ocean wave climate statistics from contemporary wave reanalysis and hindcasts

    Get PDF
    There are numerous global ocean wave reanalysis and hindcast products currently being distributed and used across different scientific fields. However, there is not a consistent dataset that can sample across all existing products based on a standardized framework. Here, we present and describe the first coordinated multi-product ensemble of present-day global wave fields available to date. This dataset, produced through the Coordinated Ocean Wave Climate Project (COWCLIP) phase 2, includes general and extreme statistics of significant wave height (Hs), mean wave period (Tm) and mean wave direction (θm) computed across 1980–2014, at different frequency resolutions (monthly, seasonally, and annually). This coordinated global ensemble has been derived from fourteen state-of-the-science global wave products obtained from different atmospheric reanalysis forcing and downscaling methods. This data set has been processed, under a specific framework for consistency and quality, following standard Data Reference Syntax, Directory Structures and Metadata specifications. This new comprehensive dataset provides support to future broad-scale analysis of historical wave climatology and variability as well as coastal risk and vulnerability assessments across offshore and coastal engineering applications

    Motility-related protein-1 (MRP-1/CD9) expression can predict disease-free survival in patients with squamous cell carcinoma of the head and neck

    Get PDF
    CD9 is a transmembrane protein that has been implicated in cell adhesion, motility and proliferation, and numerous studies have demonstrated the prognostic value of its expression in different solid tumours. The purpose of this study is to determine the predictive value of CD9 in squamous cell carcinoma (SCC) of the head and neck. A total of 153 cases were examined for CD9 expression using immunohistochemistry applied on formalin-fixed, paraffin-embedded tissue. Cases were stratified in two categories depending on CD9 expression, as positive (>/=50% positive cells) or reduced (<50%). In all, 108 cases were positive for CD9 (85 cases with membranous, and 23 with both membranous and cytoplasmic staining) and 45 reduced expression. Reduced CD9 expression was significantly associated with high grade (P=0.0007) and lower disease-free survival (DFS) (P=0.017). The latter retained its significance in the multivariate analysis. When the 23 cases with both membranous and cytoplasmic patterns were studied as a separate subgroup, there were significant associations between CD9 expression and tumour grade (P=0.025) (95% CI 11-68), tumour stage (P=0.08) (95% CI 3.5-86) and the occurrence of any failure (P=0.083) (95% CI -1.7-57). Immunohistochemical CD9 expression proved to be an independent prognostic factor in SCC of the head and neck, and it may detect patients at a high risk of recurrence. In addition, the cytoplasmic pattern seems to have an even more significant value. However, this finding is limited to the small number of cases with this pattern

    Global ocean wave fields show consistent regional trends between 1980 and 2014 in a multi-product ensemble

    Get PDF
    Historical trends in the direction and magnitude of ocean surface wave height, period, or direction are debated due to diverse data, time-periods, or methodologies. Using a consistent community-driven ensemble of global wave products, we quantify and establish regions with robust trends in global multivariate wave fields between 1980 and 2014. We find that about 30–40% of the global ocean experienced robust seasonal trends in mean and extreme wave height, period, and direction. Most of the Southern Hemisphere exhibited strong upward-trending wave heights (1–2 cm per year) and periods during winter and summer. Ocean basins with robust positive trends are far larger than those with negative trends. Historical trends calculated over shorter periods generally agree with satellite records but vary from product to product, with some showing a consistently negative bias. Variability in trends across products and time-periods highlights the importance of considering multiple sources when seeking robust change analyses.publishedVersio
    • …
    corecore