19 research outputs found

    Protocol for a randomised controlled trial of a family strengthening program to prevent unhealthy weight gain among 5 to 11-year-old children from at-risk families : the Strong Families Trial

    Get PDF
    Background: Obesity is an increasing health concern in Australia among adult and child populations alike and is often associated with other serious comorbidities. While the rise in the prevalence of childhood obesity has plateaued in high-income countries, it continues to increase among children from disadvantaged and culturally diverse backgrounds. The family environment of disadvantaged populations may increase the risk of childhood obesity through unhealthy eating and lifestyle practices. The Strong Families Trial aims to assess the effectiveness of a mixed behavioural and lifestyle intervention for parents and carers of at-risk populations, i.e. families from culturally diverse and disadvantaged backgrounds, in preventing unhealthy weight gain among children aged 5 to 11 years. Methods: Eight hundred families from low socio-economic areas in Greater Western Sydney, NSW, and Melbourne, VIC, will be recruited and randomised into a lifestyle intervention or control group. The intervention comprises 90-minute weekly sessions for 6 weeks (plus two-booster sessions) of an integrated, evidence-based, parenting and lifestyle program that accounts for the influences of family functioning. Primary (anthropometric data) and secondary (family functioning, feeding related parenting, physical activity, consumption of healthy foods, health literacy, family and household costs) outcome measures will be assessed at baseline, immediately following the intervention, and 12 months post-intervention. Discussion: This study will elucidate methods for engaging socially disadvantaged and culturally diverse groups in parenting programs concerned with child weight status. Trial Registration: This study is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12619001019190). Registered 16 July 2019

    Riparian plant litter quality increases with latitude

    Get PDF
    Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107 degrees) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen: phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.We thank the many assistants who helped with field work (Ana Chara-Serna, Francisco Correa-Araneda, Juliana Franca, Lina Giraldo, Stephanie Harper, Samuel Kariuki, Sylvain Lamothe, Lily Ng, Marcus Schindler, etc.), Cristina Grela Docal for helping with leaf chemical analyses, and Fernando Hiraldo (former director of EBD-CSIC) for his support. The study was funded by start-up funds from the Donana Biological Station (EBD-CSIC, Spain) and from Ikerbasque to LB, the Fundacao para a Ciencia e Tecnologia (FCT) strategic project ID/MAR/04292/2013 granted to MARE (Portugal), the 'BIOFUNCTION' project (CGL2014-52779-P) from the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER to LB and J. Pozo, and Basque Government funds (IT302-10) to J. Pozo

    Riparian Plant Litter Quality Increases With Latitude

    Get PDF
    Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce ‘syndromes’ resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams

    Is Aboriginal nutrition a priority for local government? A policy analysis

    Full text link
    Copyright © The Authors 2017. Objective The present study aimed to explore how Australian local governments prioritise the health and well-being of Aboriginal populations and the extent to which nutrition is addressed by local government health policy. Design In the state of Victoria, Australia, all seventy-nine local governments\u27 public health policy documents were retrieved. Inclusion of Aboriginal health and nutrition in policy documents was analysed using quantitative content analysis. Representation of Aboriginal nutrition \u27problems\u27 and \u27solutions\u27 was examined using qualitative framing analysis. The socio-ecological framework was used to classify the types of Aboriginal nutrition issues and strategies within policy documents. Setting Victoria, Australia. Subjects Local governments\u27 public health policy documents (n 79). Results A small proportion (14 %, n 11) of local governments addressed Aboriginal health and well-being in terms of nutrition. Where strategies aimed at nutrition existed, they mostly focused on individual factors rather than the broader macroenvironment. Conclusions A limited number of Victorian local governments address nutrition as a health issue for their Aboriginal populations in policy documents. Nutrition needs to be addressed as a community and social responsibility rather than merely an individual \u27behaviour\u27. Partnerships are required to ensure Aboriginal people lead government policy development

    Leaf-litter breakdown in tropical streams: is variability the norm?

    No full text
    Many forested headwater streams are heterotrophic ecosystems in which allochthonous inputs of plant litter are a major source of energy. Leaves of riparian vegetation entering the stream are broken down by a combination of biotic and abiotic processes and, in most temperate and boreal streams, provide food and habitat for dense populations of detritivorous invertebrates. However, tropical streams in different parts of the world show substantial variability in the number and diversity of leaf-shredding detritivores (hereafter detritivores). We used data obtained with standardized methods from multiple streams in Africa, the Americas, Asia, and Australia to test the hypothesis that this variability would lead to differences in the relative role of detritivores and microorganisms in the breakdown process.We also tested the hypotheses that variability in litter breakdown rates changes with litter type (native litter mixtures vs nonnative alder [Alnus glutinosa]) and is higher across regions within than outside the tropics. We found that litter breakdown rates were highly variable across sites, with no consistent pattern within geographic areas, although litter consumption by detritivores was negligible at several sites, all in America. Geographic patterns of litter breakdown also varied between litter types, with higher breakdown rates for alder than for native litter in most but not all regions.When litter breakdown rates at the tropical sites were compared to previously reported values from temperate and boreal regions, we found that differences in variability between tropical and temperate sites were inconsistent, with great differences among studies. Further global-scale studies will be needed to assess the extent to which latitudinal changes in the diversity and composition of microbial and detritivore assemblages contribute to variability in litter breakdown rates

    Data from: Biotic and abiotic variables influencing plant litter breakdown in streams: a global study

    Get PDF
    Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, have high rates of carbon dioxide evasion and they contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8ºN to 42.8ºS, using litter mixtures of local species differing in quality and phylogenetic diversity, and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, while variation in breakdown of litter mixtures was explained mainly by litter quality and phylogenetic diversity. The influence of these litter variables and pH was modulated by temperature, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons

    Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns

    No full text
    Most hypotheses explaining the general gradient of higher diversity toward the equator are implicit or explicit about greater species packing in the tropics. However, global patterns of diversity within guilds, including trophic guilds (i.e., groups of organisms that use similar food resources), are poorly known. We explored global diversity patterns of a key trophic guild in stream ecosystems, the detritivore shredders. This was motivated by the fundamental ecological role of shredders as decomposers of leaf litter and by some records pointing to low shredder diversity and abundance in the tropics, which contrasts with diversity patterns of most major taxa for which broad-scale latitudinal patterns haven been examined. Given this evidence, we hypothesized that shredders are more abundant and diverse in temperate than in tropical streams, and that this pattern is related to the higher temperatures and lower availability of high-quality leaf litter in the tropics. Our comprehensive global survey (129 stream sites from 14 regions on six continents) corroborated the expected latitudinal pattern and showed that shredder distribution (abundance, diversity and assemblage composition) was explained by a combination of factors, including water temperature (some taxa were restricted to cool waters) and biogeography (some taxa were more diverse in particular biogeographic realms). In contrast to our hypothesis, shredder diversity was unrelated to leaf toughness, but it was inversely related to litter diversity. Our findings markedly contrast with global trends of diversity for most taxa, and with the general rule of higher consumer diversity at higher levels of resource diversity. Moreover, they highlight the emerging role of temperature in understanding global patterns of diversity, which is of great relevance in the face of projected global warming
    corecore