107 research outputs found

    Progression and metastasis of lung cancer

    Get PDF

    Alveolar Hemorrhage

    Get PDF
    n/

    Molecular Classification of Neuroendocrine Tumors of the Thymus

    Get PDF
    INTRODUCTION: The WHO classification of pulmonary neuroendocrine tumors (PNETs) is also used to classify thymic NETs (TNETs) into typical and atypical carcinoid (TC and AC), large cell neuroendocrine carcinoma (LCNEC), and small cell carcinoma (SCC), but little is known about the usability of alternative classification systems. METHODS: One hundred seven TNET (22 TC, 51 AC, 28 LCNEC, and 6 SCC) from 103 patients were classified according to the WHO, the European Neuroendocrine Tumor Society, and a grading-related PNET classification. Low coverage whole-genome sequencing and immunohistochemical studies were performed in 63 cases. A copy number instability (CNI) score was applied to compare tumors. Eleven LCNEC were further analyzed using targeted next-generation sequencing. Morphologic classifications were tested against molecular features. RESULTS: Whole-genome sequencing data fell into three clusters: CNIlow, CNIint, and CNIhigh. CNIlow and CNIint comprised not only TC and AC, but also six LCNECs. CNIhigh contained all SCC and nine LCNEC, but also three AC. No morphologic classification was able to predict the CNI cluster. Cases where primary tumors and metastases were available showed progression from low-grade to higher-grade histologies. Analysis of LCNEC revealed a subgroup of intermediate NET G3 tumors that differed from LCNEC by carcinoid morphology, expression of chromogranin, and negativity for enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). CONCLUSIONS: TNETs fall into three molecular subgroups that are not reflected by the current WHO classification. Given the large overlap between TC and AC on the one hand, and AC and LCNEC on the other, we propose a morphomolecular grading system, Thy-NET G1-G3, instead of histologic classification for patient stratification and prognostication. peerReviewe

    Hypoxia increases membrane metallo-endopeptidase expression in a novel lung cancer ex vivo model - role of tumor stroma cells

    Get PDF
    Background: Hypoxia-induced genes are potential targets in cancer therapy. Responses to hypoxia have been extensively studied in vitro, however, they may differ in vivo due to the specific tumor microenvironment. In this study gene expression profiles were obtained from fresh human lung cancer tissue fragments cultured ex vivo under different oxygen concentrations in order to study responses to hypoxia in a model that mimics human lung cancer in vivo.Methods: Non-small cell lung cancer (NSCLC) fragments from altogether 70 patients were maintained ex vivo in normoxia or hypoxia in short-term culture. Viability, apoptosis rates and tissue hypoxia were assessed. Gene expression profiles were studied using Affymetrix GeneChip 1.0 ST microarrays.Results: Apoptosis rates were comparable in normoxia and hypoxia despite different oxygenation levels, suggesting adaptation of tumor cells to hypoxia. Gene expression profiles in hypoxic compared to normoxic fragments largely overlapped with published hypoxia-signatures. While most of these genes were up-regulated by hypoxia also in NSCLC cell lines, membrane metallo-endopeptidase (MME, neprilysin, CD10) expression was not increased in hypoxia in NSCLC cell lines, but in carcinoma-associated fibroblasts isolated from non-small cell lung cancers. High MME expression was significantly associated with poor overall survival in 342 NSCLC patients in a meta-analysis of published microarray datasets.Conclusions: The novel ex vivo model allowed for the first time to analyze hypoxia-regulated gene expression in preserved human lung cancer tissue. Gene expression profiles in human hypoxic lung cancer tissue overlapped with hypoxia-signatures from cancer cell lines, however, the elastase MME was identified as a novel hypoxia-induced gene in lung cancer. Due to the lack of hypoxia effects on MME expression in NSCLC cell lines in contrast to carcinoma-associated fibroblasts, a direct up-regulation of stroma fibroblast MME expression under hypoxia might contribute to enhanced aggressiveness of hypoxic cancers

    Loss of adipose triglyceride lipase is associated with human cancer and induces mouse pulmonary neoplasia

    Get PDF
    Metabolic reprogramming is a hallmark of cancer. Understanding cancer metabolism is instrumental to devise innovative therapeutic approaches. Anabolic metabolism, including the induction of lipogenic enzymes, is a key feature of proliferating cells. Here, we report a novel tumor suppressive function for adipose triglyceride lipase (ATGL), the rate limiting enzyme in the triglyceride hydrolysis cascade. In immunohistochemical analysis, non-small cell lung cancers, pancreatic adenocarcinoma as well as leiomyosarcoma showed significantly reduced levels of ATGL protein compared to corresponding normal tissues. The ATGL gene was frequently deleted in various forms of cancers. Low levels of ATGL mRNA correlated with significantly reduced survival in patients with ovarian, breast, gastric and non-small cell lung cancers. Remarkably, pulmonary neoplasia including invasive adenocarcinoma developed spontaneously in mice lacking ATGL pointing to an important role for this lipase in controlling tumor development. Loss of ATGL, as detected in several forms of human cancer, induces spontaneous development of pulmonary neoplasia in a mouse model. Our results, therefore, suggest a novel tumor suppressor function for ATGL and contribute to the understanding of cancer metabolism. We propose to evaluate loss of ATGL protein expression for the diagnosis of malignant tumors. Finally, modulation of the lipolytic pathway may represent a novel therapeutic approach in the treatment of human cancer

    European consensus statement on diagnosis and treatment of adult ADHD: The European Network Adult ADHD.

    Get PDF
    BACKGROUND: Attention deficit hyperactivity disorder (ADHD) is among the most common psychiatric disorders of childhood that persists into adulthood in the majority of cases. The evidence on persistence poses several difficulties for adult psychiatry considering the lack of expertise for diagnostic assessment, limited treatment options and patient facilities across Europe. METHODS: The European Network Adult ADHD, founded in 2003, aims to increase awareness of this disorder and improve knowledge and patient care for adults with ADHD across Europe. This Consensus Statement is one of the actions taken by the European Network Adult ADHD in order to support the clinician with research evidence and clinical experience from 18 European countries in which ADHD in adults is recognised and treated. RESULTS: Besides information on the genetics and neurobiology of ADHD, three major questions are addressed in this statement: (1) What is the clinical picture of ADHD in adults? (2) How can ADHD in adults be properly diagnosed? (3) How should ADHD in adults be effectively treated? CONCLUSIONS: ADHD often presents as an impairing lifelong condition in adults, yet it is currently underdiagnosed and treated in many European countries, leading to ineffective treatment and higher costs of illness. Expertise in diagnostic assessment and treatment of ADHD in adults must increase in psychiatry. Instruments for screening and diagnosis of ADHD in adults are available and appropriate treatments exist, although more research is needed in this age group

    Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids

    Get PDF
    International audienceThe worldwide incidence of pulmonary carcinoids is increasing, but little is known about their molecular characteristics. Through machine learning and multi-omics factor analysis, we compare and contrast the genomic profiles of 116 pulmonary carcinoids (including 35 atypical), 75 large-cell neuroendocrine carcinomas (LCNEC), and 66 small-cell lung cancers. Here we report that the integrative analyses on 257 lung neuroendocrine neoplasms stratify atypical carcinoids into two prognostic groups with a 10-year overall survival of 88% and 27%, respectively. We identify therapeutically relevant molecular groups of pulmonary car-cinoids, suggesting DLL3 and the immune system as candidate therapeutic targets; we confirm the value of OTP expression levels for the prognosis and diagnosis of these diseases, and we unveil the group of supra-carcinoids. This group comprises samples with carcinoid-like morphology yet the molecular and clinical features of the deadly LCNEC, further supporting the previously proposed molecular link between the low-and high-grade lung neuroendocrine neoplasms

    Manipulation of the immune system by non-small cell lung cancer and possible therapeutic interference

    No full text
    Pulmonary carcinomas have developed mechanisms by which they escape the attack of immune cells. Immune checkpoint molecules programmed death 1 - programmed death ligand 1 (PD1-PDL1) and the cytotoxic T-lymphocyte antigen 4 system have gained attention. The expression of PDL1 by tumor cells causes immune tolerance, and further influences the microenvironment via orchestration by cytokines. Therapy with PDL1 antibodies could restore the cytotoxicity of T-lymphocytes towards tumor cells. Many patients will respond to this treatment. However, resistance mechanisms will counteract this therapy. New investigations have identified additional immune checkpoint inhibitors such as lymphocyte activation gene 3 and T cell immunoglobulin and mucin-domain containing-3. Tumor cells also induce tolerance by manipulating cells of the innate immune system. Macrophages are polarized to tumor-friendly M2, neutrophils into N2 types, and dendritic cells and myeloid suppressor cells are switched to assist tumor cells. Regulatory T cells enter the tumor microenvironment and signal tolerance to cytotoxic cells, inhibiting the influx of NK cells. Soluble mediators either released by tumor cells or cells of the tumor stroma induce immune tolerance, examples including tryptophan and indolamine dioxygenases, arginine and adenosine. Treatment options to counteract these molecules are currently being tested. The tumor stroma has been classified as immune-inflamed, immune-excluded, and immune-desert types. The latter might be switched to an inflamed type by induction of tertiary lymph follicles. Dendritic cells and macrophages normally phagocytose tumor antigens, but inhibitors of phagocytosis can block this. Interference with these molecules is another option for re-establishing the cytotoxic action of the immune system against tumor cells. In this review we will discuss these aspects with a special emphasis on non-small cell lung cancer
    • …
    corecore