608 research outputs found

    Limitations on the role of the hyporheic zone in chromium natural attenuation in a contaminated urban stream

    Get PDF
    The urban hyporheic zone may offer natural attenuation potential for contaminants. This potential is contaminant-specific and may be spatially and temporally variable. The aim of this study was the assessment of the natural attenuation potential of the hyporheic zone of an urban stream receiving hexavalent chromium (Cr)-rich effluents from the historical land disposal of chromite ore processing residue (COPR) in Glasgow, Scotland. The evidence based approach involved the use of a network of multilevel piezometers for best capturing potential anoxic field conditions and fine-scale spatial gradients in solute concentrations of surface water and porewater. In-situ porewater sampling was integrated with sediment sampling and reach-scale monitoring of stream water quality. The results show a sharp decrease of total dissolved (filtered <0.45 μm) Cr concentrations at the surface water – sediment boundary in all profiles, from Cr mean values of 1100 μg l−1 in surface water to 5 μg l−1 in porewater. Chromium speciation analysis indicates that no Cr(VI) was detectable in the neutral pH, moderately reducing porewater, while it was the dominant species in surface water. Evidence of historical COPR detrital grains contributed to the total Cr concentrations (size fraction <150 μm) up to 8800 mg kg−1 in the streambed sediment. The abundance in the porewater of Fe (mean value = 1700 μg l−1), mainly as Fe(II), a natural electron donor for Cr(VI) reduction to Cr(III), indicates a high natural attenuation potential of the hyporheic zone for downwelling dissolved Cr, through Cr(VI) reduction to Cr(III) and the formation of Cr(III) solids of low solubility. Authigenic Cr-rich rims on particles also documented active Cr precipitation from solution in the fine sediments. Large short-term changes of stream stage and stream water composition were not reflected in the hyporheic conservative (chloride) and reactive solute composition. This result indicates only limited surface water infiltration and suggests that small advective exchange might limit the effectiveness of the hyporheic zone for enhancing Cr surface water quality at the reach-scale. This is supported by further evidence from preliminary surface water quality synoptic sampling which shows only moderate to low downstream decrease in surface water Cr concentrations. The surface water investigation needs to be supported by combined water quality-flow monitoring and to be extended to a wider range of temporal and spatial scales to corroborate the reach-scale findings

    What killed Frame Lake? A precautionary tale for urban planners

    Get PDF
    Frame Lake, located within the city of Yellowknife, Northwest Territories, Canada, has been identified as requiring significant remediation due to its steadily declining water quality and inability to support fish by the 1970s. Former gold mining operations and urbanization around the lake have been suspected as probable causes for the decline in water quality. While these land-use activities are well documented, little information is available regarding their impact on the lake itself. For this reason, Arcellinida, a group of shelled protozoans known to be reliable bioindicators of land-use change, were used to develop a hydroecological history of the lake. The purpose of this study was to use Arcellinida to: (1) document the contamination history of the lake, particularly related to arsenic (As) associated with aerial deposition from mine roaster stacks; (2) track the progress of water quality deterioration in Frame Lake related to mining, urbanization and other activities; and (3) identify any evidence of natural remediation within the lake. Arcellinida assemblages were assessed at 1-cm intervals through the upper 30 cm of a freeze core obtained from Frame Lake. The assemblages were statistically compared to geochemical and loss-on-ignition results from the core to document the contamination and degradation of conditions in the lake. The chronology of limnological changes recorded in the lake sediments were derived from 210Pb, 14C dating and known stratigraphic events. The progress of urbanization near the lake was tracked using aerial photography. Using Spearman correlations, the five most significant environmental variables impacting Arcellinida distribution were identified as minerogenics, organics, As, iron and mercury (p < 0.05; n = 30). Based on CONISS and ANOSIM analysis, three Arcellinida assemblages are identified. These include the Baseline Limnological Conditions Assemblage (BLCA), ranging from 17–30 cm and deposited in the early Holocene >7,000 years before present; the As Contamination Assemblage (ACA), ranging from 7–16 cm, deposited after ∼1962 when sedimentation began in the lake again following a long hiatus that spanned to the early Holocene; and the Eutrophication Assemblage (EA), ranging from 1–6 cm, comprised of sediments deposited after 1990 following the cessation of As and other metal contaminations. The EA developed in response to nutrient-rich waters entering the lake derived from the urbanization of the lake catchment and a reduction in lake circulation associated with the development at the lake outlet of a major road, later replaced by a causeway with rarely open sluiceways. The eutrophic condition currently charactering the lake—as evidenced by a population explosion of eutrophication indicator taxa Cucurbitella tricuspis—likely led to a massive increase in macrophyte growth and winter fish-kills. This ecological shift ultimately led to a system dominated by Hirudinea (leeches) and cessation of the lake as a recreational area

    Gold amides as anticancer drugs: synthesis and activity studies

    Get PDF
    Modular gold amide chemotherapeutics: Access to modern chemotherapeutics with robust and flexible synthetic routes that are amenable to extensive customisation is a key requirement in drug synthesis and discovery. A class of chiral gold amide complexes featuring amino acid derived ligands is reported herein. They all exhibit in vitro cytotoxicity against two slow growing breast cancer cell lines with limited toxicity towards normal epithelial cells

    Saltmarsh archives of vegetation and land use change from Big River Marsh, SW Newfoundland, Canada

    Get PDF
    Pollen and plant macrofossils are often well-preserved in coastal sediments, providing a palaeoenvironmental record of sea-level and landscape change. In this study, we examine the pollen and plant macrofossil assemblages of a well-dated saltmarsh sediment core from southwest Newfoundland, Canada, to establish recent coastal vegetation and land use change, to increase the knowledge of anthropogenic activities in the area and develop pollen chronozones for reconstructing marsh accumulation rates and to examine the representation of plant macrofossil remains in the wetland pollen profile. Grouping the pollen record into upland and wetland assemblages allows local events related to hydrological change to be separated from landscape-scale changes. The wetland pollen and plant macrofossil records indicate a general acceleration in sea-level rise ca. ad 1700. The sedge pollen and plant macrofossil records attest to multiple phases of rhizome encroachment during inferred periods of marine regression. Two chronozones are identified from the upland pollen profile; the first associated with the settlement of St. George’s Bay ca. ad 1800, signalled by increases in Plantago lanceolata and Ambrosia pollen; the second with the permanent settlement of the Port au Port peninsula ca. ad 1850, indicated by increased P. lanceolata and Rumex pollen. Comparison of the plant macrofossil and wetland pollen profiles highlights the underrepresentation of grass pollen preserved in the saltmarsh sediments and a need for further analysis of the zonation, pollen dispersal and macrofossil representation of sedge species in saltmarshes

    Workflow for the generation of expert-derived training and validation data: a view to global scale habitat mapping

    Get PDF
    Our ability to completely and repeatedly map natural environments at a global scale have increased significantly over the past decade. These advances are from delivery of a range of on-line global satellite image archives and global-scale processing capabilities, along with improved spatial and temporal resolution satellite imagery. The ability to accurately train and validate these global scale-mapping programs from what we will call “reference data sets” is challenging due to a lack of coordinated financial and personnel resourcing, and standardized methods to collate reference datasets at global spatial extents. Here, we present an expert-driven approach for generating training and validation data on a global scale, with the view to mapping the world’s coral reefs. Global reefs were first stratified into approximate biogeographic regions, then per region reference data sets were compiled that include existing point data or maps at various levels of accuracy. These reference data sets were compiled from new field surveys, literature review of published surveys, and from individually sourced contributions from the coral reef monitoring and management agencies. Reference data were overlaid on high spatial resolution satellite image mosaics (3.7 m × 3.7 m pixels; Planet Dove) for each region. Additionally, thirty to forty satellite image tiles; 20 km × 20 km) were selected for which reference data and/or expert knowledge was available and which covered a representative range of habitats. The satellite image tiles were segmented into interpretable groups of pixels which were manually labeled with a mapping category via expert interpretation. The labeled segments were used to generate points to train the mapping models, and to validate or assess accuracy. The workflow for desktop reference data creation that we present expands and up-scales traditional approaches of expert-driven interpretation for both manual habitat mapping and map training/validation. We apply the reference data creation methods in the context of global coral reef mapping, though our approach is broadly applicable to any environment. Transparent processes for training and validation are critical for usability as big data provide more opportunities for managers and scientists to use global mapping products for science and conservation of vulnerable and rapidly changing ecosystems

    What killed Frame Lake? A precautionary tale for urban planners

    Get PDF
    Frame Lake, located within the city of Yellowknife, Northwest Territories, Canada, has been identified as requiring significant remediation due to its steadily declining water quality and inability to support fish by the 1970s. Former gold mining operations and urbanization around the lake have been suspected as probable causes for the decline in water quality. While these land-use activities are well documented, li

    Developing a collaborative agenda for humanities and social scientific research on laboratory animal science and welfare.

    Get PDF
    Improving laboratory animal science and welfare requires both new scientific research and insights from enquiry in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the ‘3Rs’), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they frame questions, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including around: international harmonisation, openness and public engagement, ‘cultures of care’, harm-benefit analysis and the future of the 3Rs. The process underlines the value of interdisciplinary exchange for improving mutual understanding of different research cultures and identifies ways of enhancing the effectiveness of future research at the interface between the humanities, social sciences, science and science policy
    corecore