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Abstract   17 

The Belgian coastal plain occupies a key position as it is located at the transition between the 18 

Southern North Sea Basin and the Strait of Dover. It is characterised by thick sequences 19 

(>20m) of Pleistocene terrestrial and littoral sediments. Yet the wider stratigraphical and 20 

palaeo-environmental significance of these sediments received little attention. In this paper 21 

we draw on the results of a recent sedimentological study based on >100 drillings that spans 22 

the Pleistocene sequence, and present new biostratigraphical (pollen, foraminifera, ostracods) 23 

data, all revealing a complex history of deposition. The record includes evidence of the 24 

development of incised-valley systems that were initiated in the late Middle  and Late 25 

Pleistocene. Five phases of fluvial incision can be identified. The majority of the infills are 26 

deposited in an estuarine environment that passes into a fluvial environment land inward, 27 

except the Weichselian infill which has a predominant fluvial origin. The greatest part of the 28 

most seaward located zone of the western coastal plain was free of valley incisions, there, 29 

shallow marine sediments built up the record. Local biostratigraphical investigations provide 30 

a timeframe. The result are placed in a regional context.  31 

 32 

Keywords: complex incised-valley system, valley fill, estuarine, fluvial, pre-Eemian.  33 

 34 

1. Introduction 35 

 36 

The western coastal plain of Belgium (Fig. 1) is characterized by a thick (>20 m) 37 

accumulation of Pleistocene sediments, which extend about 20 km inland. The deposits have 38 

never been studied in the context of the Pleistocene evolution of the Southern North Sea 39 

Basin. The few existing studies concern local investigations (e.g. Denys et al., 1983; 40 

Tavernier and de Heinzelin, 1962; Vanhoorne, 1962, 2003). That the Pleistocene deposits 41 
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along the whole Belgian coast consist of littoral deposits, locally covered with Weichselian 42 

fluvial and/or aeolian deposits, is widely accepted. It is believed that the littoral deposits only 43 

extend back to the Eemian Stage and linked to one transgressive phase (Baeteman, 1993; 44 

Denys et al., 1983; Mostaert and De Moor, 1984; Mostaert et al., 1989 and Paepe, 1971), 45 

with the exception of the deposits in the area nearby the city of Lo to which a 46 

Holsteinian/Cromerian age is given (Vanhoorne, 1962, 2003). The idea that the Quaternary 47 

geological history of the western coastal plain, and even the entire Belgian coastal plain, is so 48 

simple and as young as the Eemian contradicts evidence from neighbouring countries of the 49 

Southern North Sea Basin where older littoral deposits of Middle Pleistocene age have also 50 

been described (e.g. Balescu and Lamothe, 1993; Bates et al., 2003; 1999; Roe et al. 2009; 51 

Roe and Preece, 2011; Sarnthein et al., 1986; Sommé et al.,2004). One hundred and five 52 

undisturbed mechanically drilled cores covering the whole Quaternary sediment succession 53 

provided the opportunity to make a cohesive and comprehensive sedimentological and 54 

morphological study that has led to new insights on both local and regional scale. A 55 

multidisciplinary approach is used whereby the sedimentological interpretations are 56 

supported by foraminiferal, ostracod and pollen analyses. A pollen record from a borehole at 57 

Woumen, near Diksmuide in the west of the area is described, and foraminiferal and ostracod 58 

analyses are presented from six cores from the northern, central and southern parts of the 59 

region (Fig 1). The new morphological, litho- and biostratigraphical findings show the 60 

presence of a complex incised-valley system in the western coastal plain as a result of a series 61 

of erosional and depositional phases, controlled by terrestrial and marine processes. Those 62 

processes span the late Middle and Late Pleistocene. As the western coastal plain occupies a 63 

transitional position between the largely depositional area of the Southern North Sea and the 64 

predominantly erosional Strait of Dover region (cf. Gibbard, 1988, 1995, 2007; Gupta et al., 65 
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2007; Hijma et al., 2012) the findings also provide additional insights into the late Middle 66 

and Late Pleistocene development of the wider Southern North Sea Basin.  67 

 68 

2. Geographical and geological setting 69 

 70 

2. 1. Study area 71 

 The western coastal plain (WCP) lies on the margin of the southern North Sea in the 72 

northwest of Belgium, extending from the border with France to Oostende in the north, and 73 

from Diksmuide to Lo-Reninge and Merkem in the south (Fig. 1). The coastal area is drained 74 

by the River IJzer, which rises in France, and its tributaries the Kemmelbeek and Sint 75 

Jansbeek, both having their source in Belgium (Fig. 1). A significant dune system extends 76 

along much of the coastal region. This has been locally downgraded by development and 77 

aggregate extraction. Because of embankments, the coastal plain today forms a low-lying, flat 78 

artificial landscape with sluices, ditches and canals. Its land surface ranges from +1 m and +5 79 

m TAW, (TAW ordnance datum and refers to mean lowest low-water spring at Oostende, i.e. 80 

ca. 2 m below mean sea level - Agency for Maritime Services and Coast-Division – COAST) 81 

which is below high water level. The plain is protected from flooding by the remaining dunes 82 

and locally by seawalls. The present-day landscape results from a continuous infill process 83 

controlled by sea-level rise during the Holocene (Baeteman, 1999, 2013). The modern 84 

topography thus masks the Pleistocene coastal and continental deposits that underlie the 85 

Holocene infill. The Pleistocene sediments in turn overlie Paleogene deposits of Eocene age. 86 

The Pleistocene sedimentary record is predominantly composed of shore-shelf, tidal and 87 

fluvial deposits, each depositional unit showing a variety of lithofacies and architectural 88 

elements (Bogemans, 2014; Bogemans and Baeteman, 2014). The textural composition 89 

ranges from coarse to fine sediments (gravel to clay). The gravel component is mainly 90 
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composed of shell remains, with subsidiary siliciclastic particles. The rest of the deposits are 91 

mainly siliciclastic. 92 

  93 

2.2. Research history 94 

Previous studies have mainly described the fossiliferous Pleistocene sediments of the 95 

WCP. Tavernier and de Heinzelin (1962) and Vanhoorne (1962, 2003) ), for example, 96 

describe palaeontological investigations that were undertaken on deposits from the western 97 

margin of the WCP near Lo and from the Vinkem–Izenberge area, the latter known as the 98 

Izenberge Plateau, and bordering the coastal plain (Fig. 1). At both localities Tavernier and 99 

de Heinzelin (1962) observed shell-bearing sediments between +1.45 m to +12.2 m TAW. 100 

The associated molluscan assemblages were dominated by small-sized Cardium edule, now 101 

known as Cerastoderma edule (Linnaeus, 1758), along with Macoma baltica (Linnaeus, 102 

1758), Hydrobia stagnalis (Baster, 1765) and Theodoxus fluviatilis (Müller). The authors 103 

noted the similarity between these faunas and those found today along the Belgian coast and 104 

estuaries and ascribed them to an interglacial or interstadial phase. Furthermore, they 105 

concluded that the stratigraphical position and elevation points to a Middle Pleistocene age. 106 

Similarly, Vanhoorne (1962, 2003) investigated the palynology and the chronostratigraphy of 107 

a peat unit that occurs in Lo beneath the shell-bearing layer observed by Tavernier and de 108 

Heinzelin (1962). In the so called “shell-bearing layer” in Lo the molluscan remains are often 109 

broken and form part of a predominantly siliciclastic sand deposit (Tavernier and de 110 

Heinzelin, 1962). Vanhoorne (1962), initially concluded that the peat accumulated during the 111 

Holsteinian Stage, although he could not rule out an interglacial within the Cromerian 112 

Complex. However, in 2003 he reassigned the peat bed to the Cromerian IV Substage, and 113 

attributed the overlying shell-bearing layer to the Holsteinian (Table 1). Also in 2003, 114 

Vanhoorne observed a distinct faunal succession within the shell-rich stratum in the vicinity 115 
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of Lo (+1.65 - + 2.55 m TAW). Freshwater molluscs and ostracods were observed at the base 116 

of the studied unit, whilst brackish and marine species were present at the top, dominated by 117 

the mollusc Cerastoderma glaucum (Poiret, 1789) and by the foraminiferal species Ammonia 118 

beccarii (Linnaeus, 1858), Nonion depressulum (Walker & Jacob, 1798), Elphidium 119 

exvavatum s.l. Terquem, 1875, Elphidium selseyenese (Heron-Allen & Earland, 1919) and 120 

Elphidium margaritaceum (Cushman, 1930).  121 

 The multidisciplinary palaeontological study of Denys et al. (1983) was based on 122 

drillings from near De Panne at the present coast (Fig. 1) and carried out as part of a 123 

hydrogeological survey of the Pleistocene deposits. Diatom analyses confirmed that the 124 

species composition was similar to that found today in the littoral section of the southern 125 

North Sea. However, some diatoms were associated with both warmer and colder 126 

environments (Denys et al., 1983). In addition, the samples yielded abundant marine 127 

molluscs, although terrestrial and freshwater species were also present. The appearance of 128 

Chenopodaceae pollen in all samples, re-affirmed according to Denys et al. (1983)  the 129 

littoral origin of the sediments. The sequence was assigned to the late Eemian Stage 130 

notwithstanding the predominantly sandy nature of the sediments, which yielded only poorly 131 

preserved pollen that did not permit firm biostratigraphical correlations, and the 132 

stratigraphical uncertainties associated with twenty-one stratigraphically undiagnostic  133 

molluscan species (Spaink and Sliggers in Denys et al., 1983) (Table 1).  134 

Lithostratigraphically the marine sediments are named in Belgium the Oostende 135 

Formation and defined as tidal and subtidal sand deposits, tidal mudflats and storm beach 136 

deposits (Gullentops et al., 2001) (Table 1). The marine deposits underlying the northern 137 

French coastal plain near the Belgium border are ascribed by Sommé et al. (2004) and 138 

Sommé (2013) to the Loon Formation and correlated with the Oostende Formation on the 139 
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basis of the similar character of the sediments and their stratigraphic position. An Eemian age 140 

is also given (Table 1).  141 

Furthermore in northern France, at Herzeele (Fig. 1), exposures of interglacial coastal 142 

and shallow marine sediments have been studied intensively. Sommé et al. (1978) proposed a 143 

stratigraphic correlation of the deposits in Herzeele with the shell-bearing deposits described 144 

by Tavernier and de Heinzelin (1962) in Lo and Vinkem-Izenberge. However Baeteman 145 

(Sommé et al.,1978) and later Paepe et al. (1981) expressed doubts regarding the 146 

chronostratigraphic precision of the correlation between these deposits. Baeteman carried out 147 

about 100 hand drillings in a north–south corridor from Bulskamp to Roesbrugge-Haringe 148 

(Fig. 1) in order to identify the extension of the Herzeele Formation in Belgium. In particular, 149 

she paid attention to the distribution of Cerastoderma edule in the sediments as this species 150 

are described as being dominant in both Herzeele and Lo/Vinkem-Izenberge (Sommé et 151 

al.,1978; Tavernier and de Heinzelin, 1962). In the said corridor, only fragments of bivalves 152 

and no articulated specimens like those at Herzeele were observed. The occurrence of C. 153 

edule was also limited, especially in the deposits present beyond the border of the Izenberge 154 

Plateau. All the other molluscan taxa recovered were also fragmented, except freshwater 155 

molluscs. The shell fragments were concentrated in several rather thin strata between +13 and 156 

- 1m TAW (Baeteman in Sommé et al., 1978).  157 

Pollen analysis of the peat beds underlying the shell-bearing bed at Herzeele by 158 

Vanhoorne (Sommé et al., 1978) prompted a biostratigraphic correlation with both the shell-159 

bearing bed and the peat beds near Lo. In Vanhoorne and Denys (1987) the shell-bearing bed 160 

retains that correlative Holsteinian age as stated in 1978 by Vanhoorne while the underlying 161 

deposits including the peat beds are supposed to be older; most probably Cromerian. 162 

Absolute dating of the shell-bearing bed of the Herzeele Formation at its type locality 163 

in Herzeele yielded a different age depending the dating techniques. The thermoluminescence 164 

7 
 



determination gave an age of 228 ± 30 ka or preliminary corrected 271 ± 36 ka (Balescu and 165 

Lamothe, 1993) whereas the Th/U and ESR analyses gave an age between 300 and 350 ka 166 

(Sommé et al., 1999).  167 

 168 

 3. Methods  169 

 170 

One hundred and five high-quality undisturbed continuous mechanically-drilled cores 171 

were recovered from the WCP. The cores span the Holocene and Pleistocene sediment 172 

succession and extend into the underlying Paleogene substratum. Bogemans and Baeteman 173 

(2014) introduced a series of newly identified lithofacies based on the sedimentary 174 

characteristics of the deposits observed in the undisturbed cores. These provided a basis for 175 

reconstructing the depositional environments of the area. Bogemans (2014) described and 176 

interpreted the Pleistocene deposits of each core using the new facies-based classification. 177 

Emphasis in this paper is placed on the correlation of the individual core data to develop a 178 

wider model of the regional facies architecture. This in turn is used to reconstruct the 179 

Pleistocene depositional history and palaeogeography of the WCP. An essential step in this 180 

process is the development of a series of integrated cross-sections that are constructed to 181 

provide a spatial overview.  182 

The biostratigraphical data used in the study are based on findings from an 183 

unpublished report by Roe (1999) that describes pollen, foraminifera, ostracod and molluscan 184 

analyses undertaken within the framework of an earlier project on the Pleistocene sediments 185 

of the Southern North Sea region, and on foraminifera and ostracod analyses by Bates (2011).  186 

 187 

4.  Results 188 

 189 
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This section describes the depositional facies of the study area, the subsurface 190 

morphology, the results of the palaeontological analyses from cores and finally, the history of 191 

the valley incisions and infillings. 192 

 193 

4.1. Sedimentology  194 

 195 

Three depositional environments are recognized. 196 

 197 

4.1.1. Deposits from shore-shelf environments  198 

 In the study area the shore-shelf system comprises shallow marine deposits and outer 199 

estuarine deposits. Both consist mainly of shell-rich and sand facies. The shell-rich facies are 200 

composed of matrix-supported shell remains (fragments and finely comminuted particles - 201 

‘shell grit’) with and without sand intercalations. Pebble-sized siliciclastic sediments may be 202 

present as well as mud clasts. Sporadically mud occurs in thin layers. If stratification is 203 

visible, low angle cross-bedding predominates. The sand facies consist of fine to medium 204 

grained particles, both massive and bedded, with a predominance of horizontal and low-205 

angled stratification. Shell remains as well as mud laminae are observed, but also 206 

deformation and bioturbation structures. If both shell-rich and sand facies are present within 207 

one sequence, the sand facies generally overlie the shell-rich facies.  208 

 209 

4.1.2. Deposits from tidal environments 210 

These include all deposits associated with coastal and estuarine environments and 211 

have a wide distribution in the area, especially those associated with an estuarine 212 

environment. Supratidal, intertidal and subtidal deposits are recognized, each with specific 213 

textural and sedimentary characteristics. These facies are quite well understood owing to the 214 
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availability of numerous Holocene analogue observations from the same study area 215 

(Baeteman, 2013). The supratidal deposits are composed of fine siliciclastic sediments with 216 

variable clay and silt content. They are massive or stratified and contain organic remains. 217 

Humic horizons may occur locally. Coarser sediments, especially shell fragments, are 218 

exhibited as fine beds or scattered in the deposit. The intertidal deposits comprise mud flat, 219 

mixed flat and sand flat deposits. Mud flat deposits are dominated by clay and/or silt, and are 220 

mainly massive in structure, although few beds or discontinuous and continuous laminae of 221 

coarser material are not exceptional. Deformation structures and bioturbation structures are 222 

commonly observed. The mixed flat deposits consist of alternating complexes of contrasting 223 

lithologies (from sand to clay), of which the interlayered bedding is either regularly or 224 

irregularly spaced. All components of the alternating complex are internally stratified. 225 

Bioturbations and deformation structures may occur. Shell grit, deposited as laminae, very 226 

thin beds or scattered in the facies, is not uncommon to be encountered. 227 

In the sand flat deposits fine grained sand predominates, which is stratified and partly 228 

massively bedded. Clay-silt laminae, most often discontinuous and dispersed, and/or clay 229 

clasts are present. Exceptionally, laminae with peat detritus are seen. Shell grit or fine clastic 230 

sediments are observed concentrated along foresets or on top of ripple marks. Deformation 231 

and bioturbation structures also occur. The subtidal deposits comprise fine to medium 232 

stratified and partly massive sand in which clay and silt laminae may be present, concentrated 233 

in a composite bedset or spread through the facies. Shell grit, peat detritus and fine gravel are 234 

seen, as well as deformation structures and bioturbations. The lower part of a subtidal deposit 235 

is often heterogenic and composed of sand, gravel size siliciclastic material and shell 236 

remains. The uppermost horizons, if not completely eroded, are sometimes characterised by 237 

one or several small fining up sequences. 238 

  239 
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4.1.3. Deposits from fluvial and fluvial-tidal environments  240 

These facies include fluvial deposits sensu stricto and deposits that accumulated in the 241 

transitional or inner part of an estuary where the depositional processes are predominantly 242 

fluvial. The fluvial sediments are aggraded within channels or on overbanks (following the 243 

definition of Miall, 1996). The sedimentary characteristics point to deposition by different 244 

river types. The prominent presence of fine-grained deposits especially silts, is particularly 245 

noteworthy. They are not only related to overbank environments but are also the main 246 

component of the channel facies. The latter typically show fine ripple and horizontal to 247 

oblique bedding structures. In the overbank deposits, climbing ripples prevail. The style of 248 

the associated river is unknown. Most of the other channel deposits are predominantly sand 249 

dominant and linked to both meandering and braided rivers. A detailed description is given in 250 

Bogemans (2014). Coarse grained fluvial deposits are also occasionally encountered. These 251 

are mainly composed of shell fragments and peat clasts in a sand matrix. Within the fluvial 252 

facies organic beds of peat and gyttja are observed, however their distribution as well as the 253 

thickness is locally restricted.  254 

The fluvial – tidal deposits have a grain-size distribution ranging from sand to clay. Inclined 255 

heterolithic stratification is commonly observed as well as reactivation surfaces. Vegetation 256 

remnants, deformation structures and calcium carbonate precipitates may occur. 257 

 258 

4.2. Subsurface morphology and the existence of erosional surfaces 259 

 260 

The top of the Paleogene substratum displays a largely N – S oriented depression from 261 

Ramskapelle further to the south. The thalweg of the depression runs via Oostkerke to 262 

Nieuwkapelle (Fig. 2). The depression is funnel shaped with an increasing width towards the 263 

north. Especially in the western part of the WCP a terrace-like morphology is visible. In the 264 

most seaward area north of Koksijde, Ramskapelle and Mannekensvere, the top of the 265 
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Paleogene substratum shows a series of SW – NE oriented ridges separated by small 266 

depressions (Fig. 2).  267 

The numerous cross-sections, constructed in the framework of this study, confirm the 268 

existence of a series of regional erosional surfaces within the depositional records. Both the 269 

terrace levels and the regional erosional surfaces are correlated with fluvial incision phases 270 

that generated incised-valley systems (cf. Dalrymple et al., 1994; Zaitlin et al., 1994).  271 

 272 

4.3 Palaeontology 273 

 274 

4.3.1 Foraminifera, Ostracoda and Mollusca 275 

Two sediment cores collected from the northern part of the study region, Rattevalle 276 

(36W168) and Leeuwenhof (36E132)  (Figs. 1, 8) yielded over 20 species of foraminifera and 277 

ca. 40 species of ostracods (Tables 3, 4). The samples were taken from the outer estuarine 278 

deposits of the Rattevalle core and the tidal deposits of the Leeuwenhof core (Table 2), the 279 

latter showing sedimentological evidence for freshwater input on several levels in the 280 

sequence (Bogemans, 2014). The foraminifera and ostracods of the Rattevalle core (Tables 3, 281 

4) include several large and robust species, perhaps suggesting transportation, sorting and/or 282 

reworking. The foraminifera are for the most part ‘warm’ climate species that occur in open 283 

estuarine environments and shallow coastal waters, including Elphidium crispum (Linnaeus, 284 

1758), Elphidium fichtellianum (d'Orbigny, 1846), Ammonia batavus (Hofker, 1951) and 285 

Ammonia falsobeccarii (Rouvillois, 1974). Inner estuarine and mudflat dwelling species are 286 

generally less well represented, although the presence of Trochammina inflata (Montagu 287 

1808) in several samples points to the proximity of a saltmarsh. The ostracod assemblage is 288 

also composed of ‘warm’ loving species and consistent with an estuarine environment with 289 

open access to the sea.  290 

12 
 



With the exception of the samples below 12.28 m, in the Leeuwenhof core (Tables 3, 4) 291 

many of the samples yielded a few ostracod species that are able to tolerate cooler-water 292 

conditions, such as Leucocythere batesi, (Whittaker and Horne, 2009), Limnocythere falcata 293 

(Diebel, 1968), Limnocytherina sanctipatricii (Brady and Robertson) and Cytherissa 294 

lacustris, which are freshwater species.  295 

The microfossil assemblages confirm the lithofacies interpretations (Table 2). In the case of 296 

the Rattevalle core an outer estuarine environment is supposed with high-energy shell banks, 297 

whereas at Leeuwenhof open estuarine conditions are indicated, fringed with mudflats and 298 

backed by salt marshes and freshwater habitats.   299 

The Zoutenaaie (51W142) and Reiger (51W150) cores (Fig. 1) are situated in the 300 

central part of the plain. The number of species is strongly reduced in comparison to the 301 

Rattevalle and Leeuwenhof records (Tables 3, 4). In the Zoutenaaie core, the dominance of 302 

brackish foraminifera and both brackish and freshwater ostracods conforms the lithofacies 303 

reconstructions that suggest that the sediments were deposited near the upper limit of tidal 304 

penetration in an estuary (Bogemans, 2014 and Table 2). The presence of the freshwater 305 

ostracod Scottia browniana (Jones) at a depth of 15.25 – 15.27 m in the assemblage is worth 306 

mentioning (Bates, 2011). This species has been reported in a small number of Middle 307 

Pleistocene interglacial sites in southern England, but is widely believed to have become 308 

extinct after MIS 11 (Robinson, 1979; Roe, 2001; White et al., 2013).  309 

The samples from the Reiger core between - 11.91 and - 11.93 m TAW (15.26–15.28 m 310 

below the surface) yielded a rich microfauna comprising brackish and outer estuarine/marine 311 

foraminifera, and brackish to outer estuarine/marine and freshwater ostracods (Table 3, 4). 312 

The assemblages together suggest that the deposits represent the landward part of an estuary 313 

with tidal currents bringing in outer-estuarine and/or marine species.  314 
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The samples from the Lollege core (51W138) in the southwest of the region (Fig. 1) 315 

were taking in tidal deposits (Table 2). The foraminifera and ostracod-bearing samples all lie 316 

above 0 m TAW (between 1.35 and 2.36 m beneath the surface). Foraminifera were again 317 

abundant, and diverse assemblage (10 species) was recorded (Table 3). The assemblage as a 318 

whole is indicative of an estuarine environment that was subject to full tidal mixing. The 319 

marine and outer estuarine foraminiferal species represented, include Elphidium excavatum 320 

(Terquem), Trifarina angulosa (Williamson, 1858), Elphidium margaritaceum, Lobatula 321 

lobatula (Walker & Jacob, 1798) and Elphidium crispum (Linnaeus, 1758) whilst Ammonia 322 

sp. and Haynesina germanica (Ehrenberg, 1840) are diagnostic of brackish-water and tidal 323 

flat habitats. The presence of occasional freshwater ostracods and the absence of saltmarsh 324 

forams or ostracods in the assemblage attests to distal freshwater inputs.  325 

Samples from the Woumen core (51E162) (Fig. 1,) yielded several species of brackish 326 

water foraminifera which were most abundant between 5.10 and 5.84 m, including Ammonia 327 

cf. beccarri (Linnaeus, 1758), and Haynesina germanica, Elphidium williamsoni (Haynes, 328 

1973) and Elphidium gerthi Van Voorthuysen, 1957 (Table 3). Low numbers of brackish 329 

water ostracods were also found at 8.63 m from sediments assigned to fluvial overbank 330 

deposits with tidal influence (Table 2). A single valve of the euryhaline ostracod Cyprideis 331 

torosa (Jones, 1850) was noted at 10.90 m (Table 4).  332 

None of the cores yielded any biostratigraphically diagnostic in situ microfossils. The 333 

only specimen of stratigraphical interest is Scottia browniana although a pre-MIS 9 age is 334 

hard to reconcile. The single specimen of S. browniana may have been reworked from older 335 

interglacial deposits from either the Herzeele region, the source area of the IJzer river at that 336 

time, or from older, more elevated Middle Pleistocene deposits near Vinkem - Izenberghe. It 337 

should also be noted that the temporal distribution and biostratigraphical significance of this 338 

species may also differ in continental Europe to that inferred in Britain.  339 
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 340 

4.3.2. Pollen and other palynomorphs 341 

Samples were processed for pollen analysis from between 1.50-11.60 m in the Woumen 342 

core (51E162) (Fig. 1); the Holocene-Pleistocene boundary in this core lies at 2.20 m beneath 343 

the surface. The pollen assemblages recovered from 1.50-1.85 m included arboreal elements 344 

(particularly high frequencies of Tilia), that confirm a mid-Holocene age (Roe, 1999). The 345 

pollen content from 1.85 -4.26 m was sparse, but 11 samples from a dominant peaty deposit 346 

from between 4.54 -7.28 m, yielded sufficient pollen to obtain full counts (Fig. 3). The 347 

samples from the underlying fluvial-tidal deposits (7.35 m to 11.60 m) generally only gave 348 

sparse pollen (Table 2). At the base of the core, from 10.90 m and deeper, 3 samples showed 349 

an interglacial tree pollen assemblage of low concentration (Table 5). 350 

The pollen assemblages from 4.54-7.28 m were divided into three local pollen 351 

assemblage biozones: Wo-1 (7.28 to 7.02 m), Wo-2 (7.02 to 6.15 m) and Wo-3 (6.15 to 4.54 352 

m). Biozone Wo-1, which is associated with sand below 7.20 m and peats above this depth 353 

(Fig. 3), is dominated by Corylus (35%) and Pinus pollen (23%). Quercus also occurs at 354 

moderate frequencies (18-21%), along with low percentages of Ulmus pollen. Alnus is 355 

present at low but persistent frequencies, whilst pollen of Tilia, Acer, Fraxinus and Betula 356 

occurs intermittently. Shrubs are restricted to sporadic occurrences and herbs include Poaceae 357 

(5%), low frequencies of Rumex and Chenopodiaceae. These spectra confirm the existence of 358 

a mixed temperate woodland in the region. The presence of a single grain of Typha latifolia 359 

indicates that summer temperatures exceeded 14°C (Iversen, 1944). Mild winters are 360 

indicated by the persistent presence of Pteridium. 361 

Biozone Wo-2, which occurs in organic sediments with an increasing clastic content,  362 

includes a marked rise in Corylus pollen (up to 62%) and a decline in Pinus pollen (to 10%) 363 

(Fig. 3). Ulmus, Alnus, Fraxinus and Acer pollen continue at similar frequencies to the 364 
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previous zone. Shrub and herb taxa occur in low frequencies. The sporadic appearance of 365 

Hedera points to a mild climate with winters of limited severity (Iversen, 1944; Zagwijn, 366 

1996). The consistent presence of Chenopodiaceae pollen (ca. 2%) suggests that saltmarsh 367 

vegetation was present in the surrounding area.  368 

Biozone Wo-3 coincides with a change in the stratigraphy, as the organic-rich sediments of 369 

Wo-2 are replaced by silty clays at 6.15 m (Fig. 3). The spectra are characterised by an abrupt 370 

rise in Chenopodiaceae pollen (5-10%), accompanied by a more gradual rise in Poaceae and 371 

Cyperaceae pollen. This points to the local development of a saltmarsh. Dinoflagellate cysts 372 

were also present in the pollen residues of this zone (Fig. 4) which suggests the continuing 373 

input of seawater. In the arboreal pollen assemblages, Corylus remains dominant but is less 374 

abundant than in zone Wo-2, whilst Quercus occurs at 15-24%. Picea, Taxus, Carpinus, Ilex 375 

and Salix pollen make their first appearance. The record of Taxus is noteworthy, indicating a 376 

mild oceanic climate and/or the development of calcareous soils further inland (cf. Deforce 377 

and Bastiaens, 2007). The presence of low frequencies of Alnus and Salix pollen reflects the 378 

occurrence of damp habitats, probably in adjacent areas of a floodplain. Overall, this 379 

assemblage indicates that intertidal or coastal wetland communities became fully established 380 

during this phase, with mixed thermophilous woodland persisting in the hinterland.  381 

When considered as a whole, the pollen spectra are typical of the early temperate 382 

substage of an interglacial, a time when oak and other thermophilous forest taxa were 383 

expanding and later became established in the regional forest. This inferred period of climatic 384 

amelioration coincided with rising sea levels in the coastal area. The palaeoecological 385 

changes are in line with the observed lithofacies changes, in particular the replacement of 386 

organic sediments in Wo-1 and Wo-2 by silty clays in Wo-3 as tidal environments became 387 

established. Based on the dominance of Corylus, and the records of Picea and Taxus, an 388 

Eemian correlation is likely. The latter two taxa first appear in Eemian spectra in the 389 
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Netherlands and Belgium during pollen zone E-4 (Mostaert and De Moor, 1984, 1989; 390 

Zagwijn, 1996). The sparse records of interglacial tree pollen recorded between 7.28 and 391 

11.60 m do not provide clear insights into the biostratigraphy of the sediments (Table 5). 392 

Taxa present are consistent with an early interglacial environment. The dinoflagellate cysts 393 

between 8.50 -11.60 m (Fig. 4) point to tidal activity which agree with the sedimentological 394 

interpretation; an environment with mixed tidal and fluvial influences (Table 2). However, 395 

some reworking of the dinoflagellate cysts from Paleogene strata, cannot be over-ruled. 396 

It is interesting to note that an erosional boundary occurs in the sedimentary sequence 397 

at  7.87m. Whilst no other borehole data are available from the surrounding area to confirm 398 

whether this erosional surface is local or regional in extent, the deposits up to 1 m beneath 399 

this marker horizon are characterized by a high concentration of calcareous nodules. Their 400 

presence is suggestive of drier conditions that could have resulted from lowering of water 401 

tables during a period of non-deposition and/or prolonged exposure to subaerial weathering. 402 

Together the evidence suggests that this part of the core represents a significant hiatus of pre-403 

Eemian age. 404 

 405 

4.4. History of the valley incisions and infillings 406 

 407 

The morphology of the top of the Paleogene substratum, the existence of regional erosional 408 

surfaces and the facies architecture of the Pleistocene valley fills in the WCP together attest 409 

to a complex environmental history. Five cycles of incision and valley infill are recognized 410 

(Fig. 5). The reconstruction of the successive erosional phases in combination with the 411 

stratigraphic position of the infills reveal an eastern migration of the valley systems until the 412 

third incision phase after which a widening of the valleys occurred both to the east and west.   413 

  414 
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4.4.1. Cycle I 415 

The remains of the oldest and concurrently the shallowest incised valley occur in the 416 

vicinity of Lollege, ‘t Vosje and Lo (Fig. 1, 5), where the valley floor lies between - 0.7 m 417 

and – 2 m TAW. The sedimentological properties of the bottom part of the infill point to an 418 

important freshwater influx (Fig. 7). Similar observations are made in the mollusc and 419 

ostracods assemblages by Vanhoorne (2003) at Lo. Upward the infilling sequence, sediment 420 

characteristics and foraminiferal assemblages reveal a transition into an estuarine 421 

environment. In the valley-fill part that survived the subsequent erosion phase the top of the 422 

infill gives information concerning the relative sea level at that time. As on the one hand the 423 

upper sequence boundary lays only one metre below the present surface and on the other 424 

hand the infill took place in a subtidal and lower intertidal environment, relative sea level was 425 

at that time comparable, perhaps slightly higher to that at the present.  426 

 427 

4.4.2. Cycle II 428 

Remnants of the second incision phase and the subsequent infill are observed in the 429 

drilling Kellen (66W135) (Fig. 1, 7) where a depth of around - 8 m TAW is reached. There 430 

the basal part of the valley infill facies consists of high-energy fluvial sediments (until -5.26 431 

m TAW), overlain by estuarine intertidal deposits. As next erosion only removed the eastern 432 

lying sediments the preserved deposits point to an approximately similar sea-level position as 433 

during the final stage of previous infilling phase.  434 

 435 

4.4.3. Cycle III 436 

In the central part of the WCP several cores record the presence of a third deeply 437 

incised valley, that attains a depth of – 18.5 m TAW (Fig 5, 8) and which is broadly north – 438 

south oriented (Fig. 2). As tidal channels of Holocene age have deepened and erased parts of 439 
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third valley the northerly extension remains unknown. In this valley the infilling facies grade 440 

from estuarine deposits in the north into tidally influenced river deposits in the south. The 441 

most southern penetration of the tidal signature is registered in Rattekot (Fig. 1, 8). In few 442 

isolated niches in the north fine grained fluvial deposits are observed as lowermost infill 443 

facies. Fluvial sediments are currently observed as from Nieuwkapelle into southern 444 

direction, covering the whole or a great part of the record (Fig. 8).  445 

 446 

4.4.4. Cycle IV 447 

Both west and east of aforementioned valley evidence of the fourth palaeovalley is 448 

encountered. It has the same orientation as the previous one but extends further northwards, 449 

reaching the present-day coast via Wilskerke and Middelkerke (Fig. 1). This feature has a 450 

maximum depth of – 16 m TAW in the north and less than – 10 m in the south. The infill 451 

includes various type of estuarine deposits, from outer to inner estuarine deposits, and fluvial 452 

deposits. The fluvial sediments predominate the infilling sequence from Oudkapelle and 453 

further southward (Fig. 1). They are mainly fine grained, and include both channel and 454 

overbank sediments  (infill IV – Fig. 8). However, signs of tidal penetration is observed as far 455 

as Woumen. In few places fluvial deposits are preserved as lowermost infill at the seaward 456 

side of the valley. Contrary to observations in Great Britain and France no coarse siliciclastic 457 

deposits are accumulated beside a coarse channel lag of maximum a few decimetres. The 458 

coarsest grain-size fraction consists of fine to medium fine sand.   459 

 460 

4.4.5. Cycle V 461 

Proof of the fifth and latest Pleistocene incision is found in a shallow valley extending 462 

beyond the eastern and western margins of the fourth valley (Fig. 5). The maximum depth is 463 
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–10 m. Given the dimension of the fifth incision, infill V has a spacious distribution in the 464 

WCP but consists exclusively of fluvial deposits (Fig. 7, 8). 465 

 466 

4.5. Shallow marine environments at the northern margin of the incised-valleys systems 467 

 468 

The WCP north of the line Adinkerke, Veurne, Wulpen, Nieuwpoort, Westende and 469 

Leffinge was part of a shallow marine environment. The bottom most section of the 470 

Pleistocene sequence is in the northwestern corner composed of  shell-rich deposits up to 10 471 

m, whereas east of Westende siliciclastic sand deposits are predominant. Upwards the 472 

sequence along the whole WCP, the shallow marine deposits are composed of sand in which 473 

the shell remnants are reduced to a minor component (Fig. 6). The sand sedimentation 474 

resulted, at least in the northwestern corner, in the development of a barrier creating a 475 

sheltered area on the landward side which supported tidal flats (Figure 8 in Bogemans and 476 

Baeteman, 2014). The above described shallow marine deposits prolongs into France, 477 

running between the Belgian border and Calais (Sommé et al., 2004). The stratigraphic 478 

position of these shallow marine deposits suppose a preceding stage in the transgressive 479 

phase to which infill cycle III is linked. 480 

 481 

5. Discussion    482 

 483 

On the basis of the pollen biostratigraphy of the Woumen core, infill IV took place 484 

during the Eemian Stage. The stratigraphic position of infill V in combination with the 485 

exclusive fluvial nature of the infill and the overlying marine Holocene deposits points out a 486 

Weichselian age of the infilling facies. A time indication for the aggradation phase of infill III 487 

is revealed by the lower most deposits of the Woumen core (below 7.86 m). Sedimentological 488 
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results evidence the existence of an estuarine environment but the inland position of these 489 

estuarine deposits and an early interglacial pollen spectra are contradictory. In general, an 490 

inland extension of the tidal influence is related to an advanced transgressive phase which is 491 

hard to place in an early stage of an interglacial. A primary depositional context of the pollen 492 

is therefore unlikely, a statement that is supported by the investigated dinoflagellate cysts as 493 

those contain a lot of reworked species. Taken as a whole, the presence of Eemian temperate 494 

pollen in the overlying deposits of the Woumen core, the presence of an hiatus around 7.8 m 495 

depth and the estuarine nature of the deposits under study are all in favour of a pre- Eemian 496 

age.  497 

Chronostratigraphic evidence for infill I is in the literature provided by Vanhoorne (1962, 498 

2003). However, the author did not propose one unique chronostratigraphical interpretation 499 

(see 2.2). Bates et al. (2003) state in an overview study of marine deposits of the coasts of 500 

southern England, the British Islands and Northern France that the height above modern sea-501 

level of the marine deposits of MIS 9, 7 and 5e age are the result of slow uplift of the coastal 502 

zone due to isostatic response to sediment unloading during the erosional phases and perhaps 503 

deep-seated tectonics. Antoine et al. (2003) seek an explanation in long term tectonic causes 504 

along both coasts of the Channel region and associate the Pleistocene uplift with the 505 

progressive tilting of Britain since the opening of the Atlantic Ocean and the subsidence of 506 

the North Sea. They estimate an uplift of 55 to 60 m per million years since the end of the 507 

Early Pleistocene in northern France. In Herzeele and the WCP no important tectonic faults 508 

are present and no differential tectonic movements, even tectonic activities are registered. 509 

Elements like the elevation difference between the deposits in Belgium (the vicinity of Lo – 510 

Lollege) and France of around 10 m (i.e. ca. + 10 m NGF (+ 12.29 m TAW) at Herzeele and 511 

ca. + 1 m TAW at Lo) over a distance of less than 25 km, the different depositional records 512 

and different lithological composition of the shell-bearing beds in both areas are not in favour 513 
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of a similar age for both deposits. Besides, contrary to the location in Herzeele, in the WCP 514 

the nature of the mollusc taxa point to strong reworking. The work in this paper suggests that 515 

valley infill cycle I is younger than the Formation of Herzeele in France, with a maximum 516 

age of MIS 9. Their relative position as to the channel-fill shell-rich sediments of MIS 11 age 517 

in Herzeele is in agreement with observations made by e.g. Bridgland et al. (2001) and Roe et 518 

al, (2009, 2011) in the North Sea Basin and in other parts of the world (e.g. Bard et al., 2002; 519 

Dutton et al., 2009; Lea et al., 2002; Siddall et al., 2007). Worldwide is also observed that 520 

during both MIS 7 and MIS 9 sea-level peaked several time up and down (e.g. Bard et al., 521 

2002; Dutton et al., 2009; Lea et al., 2002; Siddall et al., 2007; Waelbroeck et al.,2002). The 522 

downcutting processes of the oldest valleys could have been taking place during a glacial 523 

period s.s. or during one of the cold stages within the same MIS stage. At this moment an age 524 

indication for infill II and III is lacking, although a MIS 7 age for infill III is most likely.   525 

 526 

The presence and distribution pattern of the shell-bearing and shallow marine sand 527 

deposits prove the existence of a transport pathway from the English Channel towards the 528 

North Sea, suggesting an open Strait of Dover at the depositional phase III. A pathway that is 529 

used until today during interglacial periods, (Anthony et al., 2010; Héquette & Aernouts, 530 

2010; Reynaud & Dalrymple, 2012), except for the mud fraction (Zeelmaekers, 2011).  531 

 532 

The valley system present in the WCP can be traced further seaward into the present-533 

day nearshore area where it bends toward to west, running further parallel to the French 534 

coasts (Liu et al., 1992). The origin of the Strait of Dover is in common linked to two 535 

catastrophic outflows of North Sea glacial lakes formed during the Middle Pleistocene (e.g. 536 

Gibbard, 1988, 1995, 2007; Gibbard et al., 1996; Gupta et al., 2007; Hijma et al., 2012; 537 

Murton and Murton, 2012; Roep et al., 1975;). The first flood is situated during MIS 12, the 538 
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second within MIS 6 (Busschers et al., 2008; Cohen et al., 2011, 2014; Toucanne et al., 539 

2009). The extension of the MIS 12 glacial lake, as proposed by Gibbard (1995, 2007) and 540 

Cohen et al. (2011, 2014), implies the coverage of the Belgian coastal plain, then 541 

characterised by a higher topography than today. Deep valley incisions took place after  MIS 542 

12. During MIS 6 the WCP laid south of the lake shores as the dam forming the southeastern 543 

margin of the lake was situated northward near The Netherlands (Busschers et al., 2008; 544 

Hijma et al., 2012). In the WCP but also in the southern adjacent higher elevated area, the 545 

latter free of important erosional processes, no sedimentary evidence is present that endorse 546 

the presence of a lake or lake shore. Only aeolian and fluvial deposits are observed  south of 547 

the WCP (this work and Bogemans and Baeteman, 2006).  548 

 549 

6. Conclusions  550 

 551 

The Pleistocene deposits underlying the present Belgian western coastal plain show a 552 

complex sedimentary history characterised by five cycles of incision and deposition. In the 553 

created incised- valley systems, the bottom of the oldest valley situates only a few metres 554 

below the present-day surface. Although palynological analyses do not provide a uniform 555 

chronostratigraphic correlation, a MIS 9 age is most plausible for these oldest infill facies. A 556 

correlation with the Herzeele Formation as proposed by Vanhoorne (2003) is disclaimed. The 557 

second and third incision got deeper each time, the latter attaining a depth of -18.5m. 558 

Palynological and sedimentological evidence suggests infilling phases predating the Eemian. 559 

During the aggradation period of infill III the coastline extended more inland than ever since. 560 

Shallow marine sediments accumulated along the present day coast of both northern France 561 

and Belgian and are respectively defined as the Loon and Oostende Formation (Table 1). The 562 

Eemian age proposed by Baeteman, 1993; Denys et al., 1983; Gullentops et al., 2001; 563 
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Mostaert & De Moor, 1984; Mostaert et al., 1989; Paepe, 1971; Sommé et al. (2004) and 564 

Sommé (2013) for these deposits is no longer sustainable. The infill of the fourth and fifth 565 

incised valley date from the Eemian and Weichselian respectively. The reconstruction of the 566 

successive erosional phases in combination with the stratigraphic position of the infills reveal 567 

an eastern migration of the incised-valley systems until the third incision phase where after a 568 

widening of the valleys happened both east and westward. In addition, the incision depth of 569 

the two youngest valleys decreased consecutively from - 10 m to – 5m TAW inland. The 570 

youngest valley covers the greatest part of the western coastal plain. 571 

The Pleistocene records of the western coastal plain support the presence of “ an 572 

open” Strait of Dover. Remains of late Middle Pleistocene proglacial lake deposits as suggest 573 

by for example Cohen et al. (2011, 2014); Gibbard (1988, 1995, 2007); Gibbard et al. (1996); 574 

Hijma et al. (2012); Roep et al., (1975) are not observed in the study area and in the southern 575 

adjacent area. 576 

 577 
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