110 research outputs found

    Transcriptional Regulation of Multi-Drug Tolerance and Antibiotic-Induced Responses by the Histone-Like Protein Lsr2 in M. tuberculosis

    Get PDF
    Multi-drug tolerance is a key phenotypic property that complicates the sterilization of mammals infected with Mycobacterium tuberculosis. Previous studies have established that iniBAC, an operon that confers multi-drug tolerance to M. bovis BCG through an associated pump-like activity, is induced by the antibiotics isoniazid (INH) and ethambutol (EMB). An improved understanding of the functional role of antibiotic-induced genes and the regulation of drug tolerance may be gained by studying the factors that regulate antibiotic-mediated gene expression. An M. smegmatis strain containing a lacZ gene fused to the promoter of M. tuberculosis iniBAC (PiniBAC) was subjected to transposon mutagenesis. Mutants with constitutive expression and increased EMB-mediated induction of PiniBAC::lacZ mapped to the lsr2 gene (MSMEG6065), a small basic protein of unknown function that is highly conserved among mycobacteria. These mutants had a marked change in colony morphology and generated a new polar lipid. Complementation with multi-copy M. tuberculosis lsr2 (Rv3597c) returned PiniBAC expression to baseline, reversed the observed morphological and lipid changes, and repressed PiniBAC induction by EMB to below that of the control M. smegmatis strain. Microarray analysis of an lsr2 knockout confirmed upregulation of M. smegmatis iniA and demonstrated upregulation of genes involved in cell wall and metabolic functions. Fully 121 of 584 genes induced by EMB treatment in wild-type M. smegmatis were upregulated (“hyperinduced”) to even higher levels by EMB in the M. smegmatis lsr2 knockout. The most highly upregulated genes and gene clusters had adenine-thymine (AT)–rich 5-prime untranslated regions. In M. tuberculosis, overexpression of lsr2 repressed INH-mediated induction of all three iniBAC genes, as well as another annotated pump, efpA. The low molecular weight and basic properties of Lsr2 (pI 10.69) suggested that it was a histone-like protein, although it did not exhibit sequence homology with other proteins in this class. Consistent with other histone-like proteins, Lsr2 bound DNA with a preference for circular DNA, forming large oligomers, inhibited DNase I activity, and introduced a modest degree of supercoiling into relaxed plasmids. Lsr2 also inhibited in vitro transcription and topoisomerase I activity. Lsr2 represents a novel class of histone-like proteins that inhibit a wide variety of DNA-interacting enzymes. Lsr2 appears to regulate several important pathways in mycobacteria by preferentially binding to AT-rich sequences, including genes induced by antibiotics and those associated with inducible multi-drug tolerance. An improved understanding of the role of lsr2 may provide important insights into the mechanisms of action of antibiotics and the way that mycobacteria adapt to stresses such as antibiotic treatment

    Tuberculosis diagnostics and biomarkers: needs, challenges, recent advances, and opportunities

    Get PDF
    Tuberculosis is unique among the major infectious diseases in that it lacks accurate rapid point-of-care diagnostic tests. Failure to control the spread of tuberculosis is largely due to our inability to detect and treat all infectious cases of pulmonary tuberculosis in a timely fashion, allowing continued Mycobacterium tuberculosis transmission within communities. Currently recommended gold-standard diagnostic tests for tuberculosis are laboratory based, and multiple investigations may be necessary over a period of weeks or months before a diagnosis is made. Several new diagnostic tests have recently become available for detecting active tuberculosis disease, screening for latent M. tuberculosis infection, and identifying drug-resistant strains of M. tuberculosis. However, progress toward a robust point-of-care test has been limited, and novel biomarker discovery remains challenging. In the absence of effective prevention strategies, high rates of early case detection and subsequent cure are required for global tuberculosis control. Early case detection is dependent on test accuracy, accessibility, cost, and complexity, but also depends on the political will and funder investment to deliver optimal, sustainable care to those worst affected by the tuberculosis and human immunodeficiency virus epidemics. This review highlights unanswered questions, challenges, recent advances, unresolved operational and technical issues, needs, and opportunities related to tuberculosis diagnostics

    Clinical use of Whole Genome Sequencing for Mycobacterium tuberculosis

    Get PDF
    Drug resistant tuberculosis (TB) remains a major challenge to global health and to healthcare in the UK. In 2014, England recorded 6520 cases of TB of which 1.4% were multi-drug resistant (MDR-TB). Extensively drug resistant TB (XDR-TB) occurs at a much lower rate, but the impact on the patient and hospital is severe. Current diagnostic methods such as drug susceptibility testing and targeted molecular tests are slow to return or examine only a limited number of target regions respectively. Faster, more comprehensive diagnostics will enable earlier use of the most appropriate drug regimen thus improving patient outcome and reducing overall healthcare costs. Whole genome sequencing has been shown to provide a rapid and comprehensive view of the genotype of the organism and thus enable reliable prediction of the drug susceptibility phenotype within a clinically relevant time frame. In addition it provides the highest resolution when investigating transmission events in possible outbreak scenarios. However, robust software and database tools need to be developed for the full potential to be realized in this specialized area of medicine

    Screening for HIV-Associated Tuberculosis and Rifampicin Resistance before Antiretroviral Therapy Using the Xpert MTB/RIF Assay: A Prospective Study

    Get PDF
    In a prospective study, Stephen Lawn and colleagues find that pre-ART screening with Xpert MTB/RIF increased tuberculosis case detection by 45% compared to smear microscopy in HIV-positive patients at high risk of TB risk. AE competing interests must also pull through to the proof. “The Academic Editor, Madhukar Pai, declares that he consults for the Bill & Melinda Gates Foundation (BMGF). The BMGF supported FIND which was involved in the development of the Xpert MTB/RIF assay. He also co-chairs the Stop TB Partnership's New Diagnostics Working Group that was involved in the WHO endorsement of the Xpert assay.” Linked: Scott pmed.1001061; Evans pmed.1001064; Dowdy pmed.100106

    Detection of Mycobacterium tuberculosis in Sputum by Gas Chromatography-Mass Spectrometry of Methyl Mycocerosates Released by Thermochemolysis

    Get PDF
    Tuberculosis requires rapid diagnosis to prevent further transmission and allow prompt administration of treatment. Current methods for diagnosing pulmonary tuberculosis lack sensitivity are expensive or are extremely slow. The identification of lipids using gas chromatography- electron impact mass spectrometry (GC-EI/MS) could provide an alternative solution. We have studied mycocerosic acid components of the phthiocerol dimycocerosate (PDIM) family of lipids using thermochemolysis GC-EI/MS. To facilitate use of the technology in a routine diagnostic laboratory a simple extraction procedure was employed where PDIMs were extracted from sputum using petroleum ether, a solvent of low polarity. We also investigated a method using methanolic tetramethylammonium hydroxide, which facilitates direct transesterification of acidic components to methyl esters in the inlet of the GC-MS system. This eliminates conventional chemical manipulations allowing rapid and convenient analysis of samples. When applied to an initial set of 40 sputum samples, interpretable results were obtained for 35 samples with a sensitivity relative to culture of 94% (95%CI: 69.2,100) and a specificity of 100% (95%CI: 78.1,100). However, blinded testing of a larger set of 395 sputum samples found the assay to have a sensitivity of 61.3% (95%CI: 54.9,67.3) and a specificity of 70.6% (95%CI: 62.3,77.8) when compared to culture. Using the results obtained we developed an improved set of classification criteria, which when applied in a blinded re-analysis increased the sensitivity and specificity of the assay to 64.9% (95%CI: 58.6,70.8) and 76.2% (95%CI: 68.2,82.8) respectively. Highly variable levels of background signal were observed from individual sputum samples that inhibited interpretation of the data. The diagnostic potential of using thermochemolytic GC-EI/MS of PDIM biomarkers for diagnosis of tuberculosis in sputum has been established; however, further refinements in sample processing are required to enhance the sensitivity and robustness of the test

    13[C]-Urea Breath Test as a Novel Point-of-Care Biomarker for Tuberculosis Treatment and Diagnosis

    Get PDF
    BACKGROUND: Pathogen-specific metabolic pathways may be detected by breath tests based on introduction of stable isotopically-labeled substrates and detection of labeled products in exhaled breath using portable infrared spectrometers. METHODOLOGY/PRINCIPAL FINDINGS: We tested whether mycobacterial urease activity could be utilized in such a breath test format as the basis of a novel biomarker and diagnostic for pulmonary TB. Sensitized New-Zealand White Rabbits underwent bronchoscopic infection with either Mycobacterium bovis or Mycobacterium tuberculosis. Rabbits were treated with 25 mg/kg of isoniazid (INH) approximately 2 months after infection when significant cavitary lung pathology was present. [(13)C] urea was instilled directly into the lungs of intubated rabbits at selected time points, exhaled air samples analyzed, and the kinetics of delta(13)CO(2) formation were determined. Samples obtained prior to inoculation served as control samples for background (13)CO(2) conversion in the rabbit model. (13)CO(2), from metabolic conversion of [(13)C]-urea by mycobacterial urease activity, was readily detectable in the exhaled breath of infected rabbits within 15 minutes of administration. Analyses showed a rapid increase in the rate of (13)CO(2) formation both early in disease and prior to treatment with INH. Following INH treatment, all evaluable rabbits showed a decrease in the rate of (13)CO(2) formation. CONCLUSIONS/SIGNIFICANCE: Urea breath testing may provide a useful diagnostic and biomarker assay for tuberculosis and for treatment response. Future work will test specificity for M. tuberculosis using lung-targeted dry powder inhalation formulations, combined with co-administering oral urease inhibitors together with a saturating oral dose of unlabeled urea, which would prevent the delta(13)CO(2) signal from urease-positive gastrointestinal organisms

    Tuberculosis in Sudan: a study of Mycobacterium tuberculosis strain genotype and susceptibility to anti-tuberculosis drugs

    Get PDF
    BACKGROUND: Sudan is a large country with a diverse population and history of civil conflict. Poverty levels are high with a gross national income per capita of less than two thousand dollars. The country has a high burden of tuberculosis (TB) with an estimated 50,000 incident cases during 2009, when the estimated prevalence was 209 cases per 100,000 of the population. Few studies have been undertaken on TB in Sudan and the prevalence of drug resistant disease is not known. METHODS: In this study Mycobacterium tuberculosis isolates from 235 patients attending three treatment centers in Sudan were screened for susceptibility to isoniazid, rifampicin, ethambutol and streptomycin by the proportion method on Lowenstein Jensen media. 232 isolates were also genotyped by spoligotyping. Demographic details of patients were recorded using a structured questionnaire. Statistical analyses were conducted to examine the associations between drug resistance with risk ratios computed for a set of risk factors (gender, age, case status--new or relapse, geographic origin of the patient, spoligotype, number of people per room, marital status and type of housing). RESULTS: Multi drug-resistant tuberculosis (MDR-TB), being resistance to at least rifampicin and isoniazid, was found in 5% (95% CI: 2,8) of new cases and 24% (95% CI: 14,34) of previously treated patients. Drug resistance was associated with previous treatment with risk ratios of 3.51 (95% CI: 2.69-4.60; p < 0.001) for resistance to any drug and 5.23 (95% CI: 2.30-11.90; p < 0.001) for MDR-TB. Resistance was also associated with the geographic region of origin of the patient, being most frequently observed in patients from the Northern region and least in the Eastern region with risk ratios of 7.43 (95%CI:3.42,16.18; p: < 0.001) and 14.09 (95%CI:1.80,110.53; p:0.026) for resistance to any drug and MDR-TB. The major genotype observed was of the Central Asia spoligotype family (CAS1_Delhi), representing 49% of the 232 isolates examined. CONCLUSIONS: We conclude that emergence of drug resistant tuberculosis has the potential to be a serious public health problem in Sudan and that strengthened tuberculosis control and improved monitoring of therapy is needed. Further surveillance is required to fully ascertain the extent of the problem

    Structure-Function Correlation of the Human Central Retina

    Get PDF
    The impact of retinal pathology detected by high-resolution imaging on vision remains largely unexplored. Therefore, the aim of the study was to achieve high-resolution structure-function correlation of the human macula in vivo.To obtain high-resolution tomographic and topographic images of the macula spectral-domain optical coherence tomography (SD-OCT) and confocal scanning laser ophthalmoscopy (cSLO), respectively, were used. Functional mapping of the macula was obtained by using fundus-controlled microperimetry. Custom software allowed for co-registration of the fundus mapped microperimetry coordinates with both SD-OCT and cSLO datasets. The method was applied in a cross-sectional observational study of retinal diseases and in a clinical trial investigating the effectiveness of intravitreal ranibizumab in macular telangietasia type 2. There was a significant relationship between outer retinal thickness and retinal sensitivity (p<0.001) and neurodegeneration leaving less than about 50 µm of parafoveal outer retinal thickness completely abolished light sensitivity. In contrast, functional preservation was found if neurodegeneration spared the photoreceptors, but caused quite extensive disruption of the inner retina. Longitudinal data revealed that small lesions affecting the photoreceptor layer typically precede functional detection but later cause severe loss of light sensitivity. Ranibizumab was shown to be ineffective to prevent such functional loss in macular telangietasia type 2.Since there is a general need for efficient monitoring of the effectiveness of therapy in neurodegenerative diseases of the retina and since SD-OCT imaging is becoming more widely available, surrogate endpoints derived from such structure-function correlation may become highly relevant in future clinical trials
    corecore