103 research outputs found
Resolution of Proliferation Issues for a Sodium Fast Reactor Blanket
Breeding blankets are of interest for a sodium fast reactor (SFR) as they allow for small cores to have positive breeding gains. However, because they breed very high-quality plutonium, core designers are not currently encouraged to employ blankets. After verifying that the ERANOS code was in good agreement with BGcore, a Monte Carlo-based depletion system, it was shown that an SFR blanket design could breed less attractive plutonium than light water reactor (LWR)-bred plutonium for making a nuclear explosive device. Minor actinide (MA) doping and moderator addition were the two options studied. This study shows that it is possible to build an SFR with a secure blanket with MA addition; at steady state MAs from approximately 1.5 LWRs are required per SFR [both rated at 1 GW(electric)]
Recommended from our members
Nitrogen processes in aquatic ecosystems
Executive summary
Nature of the problem (science/management/policy)
âą Freshwater ecosystems play a key role in the European nitrogen (N) cycle, both as a reactive agent that transfers, stores and processes N loadings from the atmosphere and terrestrial ecosystems, and as a natural environment severely impacted by the increase of these loadings.
Approaches
âą This chapter is a review of major processes and factors controlling N transport and transformations for running waters, standing waters, groundwaters and riparian wetlands.
Key findings/state of knowledge
âą The major factor controlling N processes in freshwater ecosystems is the residence time of water, which varies widely both in space and in time, and which is sensitive to changes in climate, land use and management.
âą The effects of increased N loadings to European freshwaters include acidification in semi-natural environments, and eutrophication in more disturbed ecosystems, with associated loss of biodiversity in both cases.
âą An important part of the nitrogen transferred by surface waters is in the form of organic N, as dissolved organic N (DON) and particulate organic N (PON). This part is dominant in semi-natural catchments throughout Europe and remains a significant component of the total N load even in nitrate enriched rivers.
âą In eutrophicated standing freshwaters N can be a factor limiting or co-limiting biological production, and control of both N and phosphorus (P) loading is oft en needed in impacted areas, if ecological quality is to be restored.
Major uncertainties/challenges
âą The importance of storage and denitrifi cation in aquifers is a major uncertainty in the global N cycle, and controls in part the response of catchments to land use or management changes. In some aquifers, the increase of N concentrations will continue for decades even if efficient mitigation measures are implemented now.
âą Nitrate retention by riparian wetlands has oft en been highlighted. However, their use for mitigation must be treated with caution, since their effectiveness is difficult to predict, and side effects include increased DON emissions to adjacent open waters, N2O emissions to the atmosphere, and loss of biodiversity.
âą In fact, the character and specific spatial origins of DON are not fully understood, and similarly the quantitative importance of indirect N2O emissions from freshwater ecosystems as a result of N leaching losses from agricultural soils is still poorly known at the regional scale.
âą These major uncertainties remain due to the lack of adequate monitoring (all forms of N at a relevant frequency), especially â but not only â in the southern and eastern EU countries.
Recommendations (research/policy)
âą The great variability of transfer pathways, buffering capacity and sensitivity of the catchments and of the freshwater ecosystems calls for site specific mitigation measures rather than standard ones applied at regional to national scale.
âą The spatial and temporal variations of the N forms, the processes controlling the transport and transformation of N within freshwaters, require further investigation if the role of N in influencing freshwater ecosystem health is to be better understood, underpinning the implementation of the EU Water Framework Directive for European freshwaters
Land Use Change to Reduce Freshwater Nitrogen and Phosphorus will Be Effective Even with Projected Climate Change
Recent studies have demonstrated that projected climate change will likely enhance nitrogen (N) and phosphorus (P) loss from farms and farmland, with the potential to worsen freshwater eutrophication. Here, we investigate the relative importance of the climate and land use drivers of nutrient loss in nine study catchments in Europe and a neighboring country (Turkey), ranging in area from 50 to 12,000 km2. The aim was to quantify whether planned large-scale, land use change aimed at N and P loss reduction would be effective given projected climate change. To this end, catchment-scale biophysical models were applied within a common framework to quantify the integrated effects of projected changes in climate, land use (including wastewater inputs), N deposition, and water use on river and lake water quantity and quality for the mid-21st century. The proposed land use changes were derived from catchment stakeholder workshops, and the assessment quantified changes in mean annual N and P concentrations and loads. At most of the sites, the projected effects of climate change alone on nutrient concentrations and loads were small, whilst land use changes had a larger effect and were of sufficient magnitude that, overall, a move to more environmentally focused farming achieved a reduction in N and P concentrations and loads despite projected climate change. However, at BeyĆehir lake in Turkey, increased temperatures and lower precipitation reduced water flows considerably, making climate change, rather than more intensive nutrient usage, the greatest threat to the freshwater ecosystem. Individual site responses did however vary and were dependent on the balance of diffuse and point source inputs. Simulated lake chlorophyll-a changes were not generally proportional to changes in nutrient loading. Further work is required to accurately simulate the flow and water quality extremes and determine how reductions in freshwater N and P translate into an aquatic ecosystem response
Storm impacts on phytoplankton community dynamics in lakes
In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.Peer reviewe
Storm impacts on phytoplankton community dynamics in lakes
In many regions across the globe, extreme weather events, such as storms, have increased in frequency, intensity and duration. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. For lake ecosystems, high winds and rainfall associated with storms are linked by short term runoff events from catchments and physical mixing of the water column. Although we have a well-developed understanding of how such wind and precipitation events alter lake physical processes, our mechanistic understanding of how these short-term disturbances 48 translate from physical forcing to changes in phytoplankton communities is poor. Here, we provide a conceptual model that identifies how key storm features (i.e., the frequency, intensity, and duration of wind and precipitation) interact with attributes of lakes and their watersheds to generate changes in a lakeâs physical and chemical environment and subsequently phytoplankton community structure and dynamics. We summarize the current understanding of storm-phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions by generating testable hypotheses across a global gradient of lake types and environmental conditions.Fil: Stockwell, Jason D.. University of Vermont; Estados UnidosFil: Adrian, Rita. Leibniz Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Andersen, Mikkel. Dundalk Institute of Technology; IrlandaFil: Anneville, Orlane. Institut National de la Recherche Agronomique; FranciaFil: Bhattacharya, Ruchi. University of Missouri; Estados UnidosFil: Burns, Wilton G.. University of Vermont; Estados UnidosFil: Carey, Cayelan C.. Virginia Tech University; Estados UnidosFil: Carvalho, Laurence. Freshwater Restoration & Sustainability Group; Reino UnidoFil: Chang, ChunWei. National Taiwan University; RepĂșblica de ChinaFil: De Senerpont Domis, Lisette N.. Netherlands Institute of Ecology; PaĂses BajosFil: Doubek, Jonathan P.. University of Vermont; Estados UnidosFil: Dur, GaĂ«l. Shizuoka University; JapĂłnFil: Frassl, Marieke A.. Griffith University; AustraliaFil: Gessner, Mark O.. Leibniz Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Hejzlar, Josef. Biology Centre of the Czech Academy of Sciences; RepĂșblica ChecaFil: Ibelings, Bas W.. University of Geneva; SuizaFil: Janatian, Nasim. Estonian University of Life Sciences; EstoniaFil: Kpodonu, Alfred T. N. K.. City University of New York; Estados UnidosFil: Lajeunesse, Marc J.. University of South Florida; Estados UnidosFil: Lewandowska, Aleksandra M.. Tvarminne Zoological Station; FinlandiaFil: Llames, Maria Eugenia del Rosario. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Universidad Nacional de San MartĂn. Instituto de Investigaciones BiotecnolĂłgicas; ArgentinaFil: Matsuzaki, Shin-ichiro S.. National Institute for Environmental Studies; JapĂłnFil: Nodine, Emily R.. Rollins College; Estados UnidosFil: NĂ”ges, Peeter. Estonian University of Life Sciences; EstoniaFil: Park, Ho-Dong. Shinshu University; JapĂłnFil: Patil, Vijay P.. US Geological Survey; Estados UnidosFil: Pomati, Francesco. Swiss Federal Institute of Water Science and Technology; SuizaFil: Rimmer, Alon. Kinneret Limnological Laboratory; IsraelFil: Rinke, Karsten. Helmholtz-Centre for Environmental Research; AlemaniaFil: Rudstam, Lars G.. Cornell University; Estados UnidosFil: Rusak, James A.. Ontario Ministry of the Environment and Climate Change; CanadĂĄFil: Salmaso, Nico. Research and Innovation Centre - Fondazione Mach; ItaliaFil: Schmitt, François. Laboratoire dâOcĂ©anologie et de GĂ©osciences; FranciaFil: Seltmann, Christian T.. Dundalk Institute of Technology; IrlandaFil: Souissi, Sami. Universite Lille; FranciaFil: Straile, Dietmar. University of Konstanz; AlemaniaFil: Thackeray, Stephen J.. Lancaster Environment Centre; Reino UnidoFil: Thiery, Wim. Vrije Unviversiteit Brussel; BĂ©lgica. Institute for Atmospheric and Climate Science; SuizaFil: Urrutia Cordero, Pablo. Uppsala University; SueciaFil: Venail, Patrick. Universidad de Ginebra; SuizaFil: Verburg, Piet. 8National Institute of Water and Atmospheric Research; Nueva ZelandaFil: Williamson, Tanner J.. Miami University; Estados UnidosFil: Wilson, Harriet L.. Dundalk Institute of Technology; IrlandaFil: Zohary, Tamar. Israel Oceanographic & Limnological Research; IsraelGLEON 20: All Hands' MeetingRottnest IslandAustraliaUniversity of Western AustraliaUniversity of AdelaideGlobal Lake Ecological Observatory Networ
The extent and variability of storm-induced temperature changes in lakes measured with long-term and high-frequency data
The intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind-induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long-term and high-frequency lake datasets from 11 countries to assess the magnitude of wind- vs. rainstorm-induced changes in epilimnetic temperature. We found small day-to-day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day-to-day epilimnetic temperature decreased, on average, by 0.28 degrees C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 +/- 2.7 m s(-1), 1 SD) and by 0.15 degrees C after the heaviest rainstorms (storm mean daily rainfall: 21.3 +/- 9.0 mm). The largest decreases in epilimnetic temperature were observed >= 2 d after sustained strong wind or heavy rain (top 5(th) percentile of wind and rain events for each lake) in shallow and medium-depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm-induced mean epilimnetic temperature decreases were typicallyPeer reviewe
Recommended from our members
Widespread deoxygenation of temperate lakes
The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity, nutrient biogeochemistry, greenhouse gas emissions, and the quality of drinking water. The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity, but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification8,9 or oxygen may increase as a result of enhanced primary production. Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the worldâs oceans and could threaten essential lake ecosystem services
Thermal-Hydraulic Analysis of Innovative Fuel Configurations for the Sodium Fast Reactor
The sodium fast reactor (SFR) is currently being reconsidered as an instrument for
actinide management throughout the world, thanks in part to international programs such
as the Generation-IV and especially the Global Nuclear Energy Partnership (GNEP). The
success of these programs, in particular the GNEP, is dependent upon the ability of the
SFR to manage actinide inventory while remaining economically competitive. In order to
achieve these goals, the fuel must be able to operate reliably at high power densities.
However, the power density of the fuel is limited by fuel-clad chemical interaction
(FCCI) for metallic fuel, cladding thermal and irradiation strain, the fuel melting point,
sodium boiling, and to a lesser extent the sodium pressure drop in the fuel channels.
Therefore, innovative fuel configurations that reduce clad stresses, sodium pressure
drops, and fuel/clad temperatures could be applied to the SFR core to directly improve
the performance and economics. Two particular designs of interest that could potentially
improve the performance of the SFR core are the internally and externally cooled annular
fuel and the bottle-shaped fuel.
In order to evaluate the thermal-hydraulic performance of these fuels, the capabilities of
the RELAP5-3D code have been expanded to perform subchannel analysis in sodiumcooled
fuel assemblies with non-conventional geometries. This expansion was enabled by
the use of control variables in the code. When compared to the SUPERENERGY II code,
the prediction of core outlet temperature agreed within 2%. In addition, the RELAP5-3D
subchannel model was applied to the ORNL 19-pin test, and it was found that the code
could predict the measured outlet temperature distribution with a maximum error of ~8%.
As an application of this subchannel model, duct ribs were explored as a means of
reducing core outlet temperature peaking within the fuel assemblies. The performance of
the annular and bottle-shaped fuel was also investigated using this subchannel model.
The annular fuel configurations are best suited for low conversion ratio cores. The
magnitude of the power uprate enabled by metal annular fuel in the CR = 0.25 cores is
20%, and is limited by the FCCI constraint during a hypothetical flow blockage of the
inner-annular channel due to the small diameters of the inner-annular flow channel (3.6
mm). On the other hand, a complete blockage of the hottest inner-annular flow channel in
the oxide fuel case results in sodium boiling, which renders the annular oxide fuel
concept unacceptable for use in a SFR. The bottle-shaped fuel configurations are best
suited for high conversion ratio cores. In the CR = 0.71 cores, the bottle-shaped fuel
configuration reduces the overall core pressure drop in the fuel channels by up to 36.3%.
The corresponding increase in core height with bottle-shaped fuel is between 15.6% and
18.3%.
A full-plant RELAP5-3D model was created to evaluate the transient performance of the
base and innovative fuel configurations during station blackout and UTOP transients. The
transient analysis confirmed the good thermal-hydraulic performance of the annular and
bottle-shaped fuel designs with respect to their respective solid fuel pin cases.Idaho National LaboratoryUnited States. Dept. of EnergyU.S. Nuclear Regulatory Commissio
- âŠ