526 research outputs found

    Realisierung und Evaluierung von Interaktionskonzepten für elektronische Fragebögen auf Smartwatches

    Get PDF
    Der Begriff Tinnitus bezeichnet Töne oder Geräusche, die eine Person wahrnimmt, jedoch keiner äußeren physikalischen Quelle zugeordnet werden können. Der subjektive Tinnitus wird nur vom betroffenen Menschen wahrgenommen und kann mit Messgeräten nicht erfasst und aufgezeichnet werden. Das TrackYourTinnitus Projekt dient zur Erfassung und Aufzeichnung dieser krankheitsbedingten, subjektiven Lautstärkeschwankungen. Zur Erfassung der Daten werden mobile Anwendungen für Smartphones eingesetzt, die den Projektteilnehmern zu bestimmten Zeitpunkten Fragebögen bereitstellen. Diese sollen von den Teilnehmern zeitnahe bearbeitet werden. Die erfassten Daten werden auf einem Server aufbereitet und gespeichert, sodass sie später unterstützend für die Behandlung von Patienten und nutzbringend für die Forschung eingesetzt werden können. Um die Akzeptanz der entwickelten mobilen Anwendungen zu steigern, soll in dieser Masterarbeit geprüft werden, ob sich Smartwatches für den Einsatz in einem Mobile Crowd Sensing System eignen. Hierfür wurde ein Umfragesystem mit Smartwatch Unterstützung implementiert. In die Smartwatch-Anwendung wurden verschiedene Eingabeformen zur Beantwortung von Fragen integriert. Die entwickelten Eingabeformen zielen auf eine komfortable Beantwortung von Umfragen über den Touchscreen und die integrierte Spracheingabe. Diese werden später in einer Studie auf ihre Tauglichkeit evaluiert. Für die Durchführung eines Vergleiches zwischen Smartwatch und Smartphone wurde zudem eine Smartphone- Anwendung implementiert. Ziel der Studie ist es, festzustellen ob der Einsatz von Smartwatches in einem Mobile Crowd Sensing System sinnvoll ist

    Using Wearables in the Context of Chronic Disorders - Results of a Pre-Study

    Get PDF
    Smart mobile devices are variously used in the health sector. Some mobile applications empower patients to better understand their health problems, others guide them in health behavior. Moreover, smart mobile devices can be used in clinical research. Mobile crowd sensing has proven high usefulness for collecting health data with high ecological validity in this context. As the core idea, individually recorded health data are evaluated and fed back to individuals to better control their symptoms. For this purpose, the Track- YourTinnitus mobile crowd sensing platform was developed to empower patients to cope better with their tinnitus. So far, the platform has solely gathered patient data based on mobile questionnaires. When filling in a questionnaire, however, the analysis of the heartrate might provide novel information to medical experts. As monitoring the heartrate with smart mobile devices is costly, the trend towards wearables offers promising perspectives. Using smartwatches instead of smartphones in TrackYourTinnitus, however, requires questionnaire management on smartwatches. This work presents results of a prestudy related to the feasibility of sophisticated questionnaires on smartwatches. A prototype was developed and evaluated with 24 subjects. The obtained results are promising regarding the use of smartwatches for mobile crowd sensing in the context of chronic disorders

    DoubleFace: Adjustable translucent system to improve thermal comfort

    Get PDF
    The DoubleFace project aims at developing a new product that passively improves thermal comfort of indoor and semi-indoor spaces by means of lightweight materials for latent heat storage, while simultaneously allowing daylight to pass through as much as possible. Specifically, the project aims at designing and prototyping an adjustable translucent modular system featuring thermal insulation and thermal absorption in a calibrated manner, which is adjustable according to different heat loads during summer- and wintertime. The output consists of a proof of concept, a series of performance simulations and measurement and a prototype of an adjustable thermal mass system based on lightweight and translucent materials: phase-changing materials (PCM) for latent heat storage and translucent aerogel particles for thermal insulation

    5PMICROTUBULE-DEPOLYMERIZING AGENTS USED IN ANTIBODY-DRUG-CONJUGATES INDUCE ANTITUMOR ACTIVITY BY STIMULATION OF DENDRITIC CELLS

    Get PDF
    Antibody drug conjugates (ADCs) are emerging as powerful treatment strategies with outstanding target specificity and high therapeutic activity in cancer patients. While >30 ADCs are currently being investigated in clinical trials, brentuximabvedotin and T-DM1 represent clinically approved ADCs in cancer patients. We hypothesized that their sustained clinical responses could be related to the stimulation of an antitumor immune response. Indeed, the two microtubule-destabilizing agents Dolastatin 10 and Ansamitocin P3, from which the cytotoxic components of brentuximabvedotin and T-DM1 are derived, may serve as prototypes for a class of agents that induce tumor cell death and convert tumor resident, tolerogenic dendritic cells (DCs) into efficient antigen presenting cells (APCs). The two drugs induced phenotypic and functional maturation of murine splenic as well as human monocyte-derived DCs. In contrast, microtubule-stabilizing agents such as taxanes did not display this feature. In tumor models, both Dolastatin 10 and Ansamitocin P3 efficiently promoted antigen uptake and migration of tumor-resident DCs to tumor-draining lymph nodes, thereby potentiating tumor-specific T cell responses. Underlining the requirement of an intact host immune system for the full therapeutic benefit of these two compounds, their antitumor effect was far less pronounced in mice lacking adaptive immunity or dendritic cells. Combinations with immune checkpoint inhibition (anti-CTLA-4/-PD-1) did further augment antitumor immunity and tumor rejection, which was reflected by reduced Treg numbers and elevated effector function of tumor resident T cells. Ultimately, we were able to demonstrate peripheral immune cell activation and brisk T cell infiltration into tumors in patients previously treated with BrentuximabVedotin. Experiments are currently ongoing to investigate the immunological mode of action of T-DM1 using orthotopic breast cancer models and patients undergoing treatment. Our data reveal a novel mode of action for microtubule-depolymerizing agents and provide a strong rationale for clinical treatment regimens combining these with immune-based therapies. Disclosure: All authors have declared no conflicts of interes

    The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity

    Get PDF
    In addition to direct tumor cell cytotoxicity, chemotherapy can mediate tumor reduction through immune modulation of the tumor microenvironment to promote anti-tumor immunity. Mature dendritic cells (DCs) play key roles in priming robust immune responses in tumor-bearing hosts. Here, we screened a panel of 21 anticancer agents with defined molecular targets for their ability to induce direct maturation of DCs. We identified ansamitocin P3, a microtubule-depolymerizing agent, as a potent inducer of phenotypic and functional maturation of DCs. Exposure of both murine spleen-derived and human monocyte-derived DCs to ansamitocin P3 triggered up-regulation of maturation markers and production of pro-inflammatory cytokines, resulting in an enhanced T cell stimulatory capacity. Local administration of ansamitocin P3 induced maturation of skin Langerhans cells in vivo and promoted antigen uptake and extensive homing of tumor-resident DCs to tumor-draining lymph nodes. When used as an adjuvant in a specific vaccination approach, ansamitocin P3 dramatically increased activation of antigen-specific T cells. Finally, we demonstrate that ansamitocin P3, due to its immunomodulatory properties, acts in synergy with antibody-mediated blockade of the T cell inhibitory receptors PD-1 and CTLA-4. The combination treatment was most effective and induced durable growth inhibition of established tumors. Mechanistically, we observed a reduced regulatory T cell frequency and improved T cell effector function at the tumor site. Taken together, our study unravels an immune-based anti-tumor mechanism exploited by microtubule-depolymerizing agents, including ansamitocin P3, and paves the way for future clinical trials combining this class of agents with immunotherapy

    Optical Microscopy in the Nano-World

    Get PDF
    Scanning near-field optical microscopy (SNOM) is an optical microscopy whose resolution is not bound to the diffraction limit. It provides chemical information based upon spectral, polarization and/or fluorescence contrast images. Details as small as 20 nm can be recognized. Photophysical and photochemical effects can be studied with SNOM on a similar scale. This article reviews a good deal of the experimental and theoretical work on SNOM in Switzerland

    First detection of a VHE gamma-ray spectral maximum from a Cosmic source: H.E.S.S. discovery of the Vela X nebula

    Get PDF
    The Vela supernova remnant (SNR) is a complex region containing a number of sources of non-thermal radiation. The inner section of this SNR, within 2 degrees of the pulsar PSR B0833-45, has been observed by the H.E.S.S. gamma-ray atmospheric Cherenkov detector in 2004 and 2005. A strong signal is seen from an extended region to the south of the pulsar, within an integration region of radius 0.8 deg. around the position (RA = 08h 35m 00s, dec = -45 deg. 36' J2000.0). The excess coincides with a region of hard X-ray emission seen by the ROSAT and ASCA satellites. The observed energy spectrum of the source between 550 GeV and 65 TeV is well fit by a power law function with photon index = 1.45 +/- 0.09(stat) +/- 0.2(sys) and an exponential cutoff at an energy of 13.8 +/- 2.3(stat) +/- 4.1(sys) TeV. The integral flux above 1 TeV is (1.28 +/- 0.17 (stat) +/- 0.38(sys)) x 10^{-11} cm^{-2} s^{-1}. This result is the first clear measurement of a peak in the spectral energy distribution from a VHE gamma-ray source, likely related to inverse Compton emission. A fit of an Inverse Compton model to the H.E.S.S. spectral energy distribution gives a total energy in non-thermal electrons of ~2 x 10^{45} erg between 5 TeV and 100 TeV, assuming a distance of 290 parsec to the pulsar. The best fit electron power law index is 2.0, with a spectral break at 67 TeV.Comment: 5 pages, 4 figures, accepted for publication in Astronomy and Astrophysics letter

    A possible association of the new VHE gamma-ray source HESS J1825--137 with the pulsar wind nebula G18.0--0.7

    Full text link
    We report on a possible association of the recently discovered very high-energy γ\gamma-ray source HESS J1825--137 with the pulsar wind nebula (commonly referred to as G 18.0--0.7) of the 2.1×1042.1\times 10^{4} year old Vela-like pulsar PSR B1823--13. HESS J1825--137 was detected with a significance of 8.1 σ\sigma in the Galactic Plane survey conducted with the H.E.S.S. instrument in 2004. The centroid position of HESS J1825--137 is offset by 11\arcmin south of the pulsar position. \emph{XMM-Newton} observations have revealed X-ray synchrotron emission of an asymmetric pulsar wind nebula extending to the south of the pulsar. We argue that the observed morphology and TeV spectral index suggest that HESS J1825--137 and G 18.0--0.7 may be associated: the lifetime of TeV emitting electrons is expected to be longer compared to the {\it XMM-Newton} X-ray emitting electrons, resulting in electrons from earlier epochs (when the spin-down power was larger) contributing to the present TeV flux. These electrons are expected to be synchrotron cooled, which explains the observed photon index of 2.4\sim 2.4, and the longer lifetime of TeV emitting electrons naturally explains why the TeV nebula is larger than the X-ray size. Finally, supernova remnant expansion into an inhomogeneous medium is expected to create reverse shocks interacting at different times with the pulsar wind nebula, resulting in the offset X-ray and TeV γ\gamma-ray morphology.Comment: 5 pages, 3 figures, to appear in Astronomy and Astrophysics Letter

    3.9 day orbital modulation in the TeV gamma-ray flux and spectrum from the X-ray binary LS 5039

    Full text link
    New observations of LS 5039, a High Mass X-ray Binary comprising a massive star and compact object, were carried out with the High Energy Stereoscopic System of Cherenkov Telescopes (H.E.S.S.) in 2005 at very high energy (VHE) gamma-ray energies. These observations reveal that its flux and energy spectrum are modulated with the 3.9 day orbital period of the binary system. This is the first time in gamma-ray astronomy that orbital modulation has been observed, and periodicity clearly established using ground-based gamma-ray detectors. The VHE gamma-ray emission is largely confined to half of the orbit, peaking around the inferior conjunction epoch of the compact object. For this epoch, there is also a hardening of the energy spectrum in the energy range between 0.2 TeV and a few TeV. The flux vs. orbital phase profile provides the first clear indication of gamma-ray absorption via pair production within an astrophysical source, a process which is expected to occur if the gamma-ray production site is situated within ~1 AU of the compact object. Moreover the production region size must be not significantly greater than the binary separation (~0.15 AU). Notably, these constraints are also considerably smaller than the collimated outflows or jets (extending out to ~1000 AU) observed in LS 5039. The spectral hardening could arise from variations with phase in the maximum electron energies, and/or the dominant VHE gamma-ray production mechanism.Comment: 8 pages, 8 figures, accepted for publication in Astronomy & Astrophysic
    corecore