158 research outputs found

    Parma consensus statement on metabolic disruptors

    Get PDF
    A multidisciplinary group of experts gathered in Parma Italy for a workshop hosted by the University of Parma, May 16–18, 2014 to address concerns about the potential relationship between environmental metabolic disrupting chemicals, obesity and related metabolic disorders. The objectives of the workshop were to: 1. Review findings related to the role of environmental chemicals, referred to as “metabolic disruptors”, in obesity and metabolic syndrome with special attention to recent discoveries from animal model and epidemiology studies; 2. Identify conclusions that could be drawn with confidence from existing animal and human data; 3. Develop predictions based on current data; and 4. Identify critical knowledge gaps and areas of uncertainty. The consensus statements are intended to aid in expanding understanding of the role of metabolic disruptors in the obesity and metabolic disease epidemics, to move the field forward by assessing the current state of the science and to identify research needs on the role of environmental chemical exposures in these diseases. We propose broadening the definition of obesogens to that of metabolic disruptors, to encompass chemicals that play a role in altered susceptibility to obesity, diabetes and related metabolic disorders including metabolic syndrome

    Prenatal Stress Exposure Related to Maternal Bereavement and Risk of Childhood Overweight

    Get PDF
    BACKGROUND: It has been suggested that prenatal stress contributes to the risk of obesity later in life. In a population-based cohort study, we examined whether prenatal stress related to maternal bereavement during pregnancy was associated with the risk of overweight in offspring during school age. METHODOLOGY/PRINCIPAL FINDINGS: We followed 65,212 children born in Denmark from 1970-1989 who underwent health examinations from 7 to 13 years of age in public or private schools in Copenhagen. We identified 459 children as exposed to prenatal stress, defined by being born to mothers who were bereaved by death of a close family member from one year before pregnancy until birth of the child. We compared the prevalence of overweight between the exposed and the unexposed. Body mass index (BMI) values and prevalence of overweight were higher in the exposed children, but not significantly so until from 10 years of age and onwards, as compared with the unexposed children. For example, the adjusted odds ratio (OR) for overweight was 1.68 (95% confidence interval [CI] 1.08-2.61) at 12 years of age and 1.63 (95% CI 1.00-2.61) at 13 years of age. The highest ORs were observed when the death occurred in the period from 6 to 0 month before pregnancy (OR 3.31, 95% CI 1.71-6.42 at age 12, and OR 2.31, 95% CI 1.08-4.97 at age 13). CONCLUSIONS/SIGNIFICANCE: Our results suggest that severe pre-pregnancy stress is associated with an increased risk of overweight in the offspring in later childhood

    Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002

    Get PDF
    BACKGROUND: Although diet and activity are key factors in the obesity epidemic, laboratory studies suggest that endocrine disrupting chemicals may also affect obesity. METHODS: We analyzed associations between six phthalate metabolites measured in urine and body mass index (BMI) and waist circumference (WC) in National Health and Nutrition Examination Survey (NHANES) participants aged 6–80. We included 4369 participants from NHANES 1999–2002, with data on mono-ethyl (MEP), mono-2-ethylhexyl (MEHP), mono-n-butyl (MBP), and mono-benzyl (MBzP) phthalate; 2286 also had data on mono-2-ethyl-5-hydroxyhexyl (MEHHP) and mono-2-ethyl-5-oxohexyl (MEOHP) phthalate (2001–2002). Using multiple regression, we computed mean BMI and WC within phthalate quartiles in eight age/gender specific models. RESULTS: The most consistent associations were in males aged 20–59; BMI and WC increased across quartiles of MBzP (adjusted mean BMI = 26.7, 27.2, 28.4, 29.0, p-trend = 0.0002), and positive associations were also found for MEOHP, MEHHP, MEP, and MBP. In females, BMI and WC increased with MEP quartile in adolescent girls (adjusted mean BMI = 22.9, 23.8, 24.1, 24.7, p-trend = 0.03), and a similar but less strong pattern was seen in 20–59 year olds. In contrast, MEHP was inversely related to BMI in adolescent girls (adjusted mean BMI = 25.4, 23.8, 23.4, 22.9, p-trend = 0.02) and females aged 20–59 (adjusted mean BMI = 29.9, 29.9, 27.9, 27.6, p-trend = 0.02). There were no important associations among children, but several inverse associations among 60–80 year olds. CONCLUSION: This exploratory, cross-sectional analysis revealed a number of interesting associations with different phthalate metabolites and obesity outcomes, including notable differences by gender and age subgroups. Effects of endocrine disruptors, such as phthalates, may depend upon endogenous hormone levels, which vary dramatically by age and gender. Individual phthalates also have different biologic and hormonal effects. Although our study has limitations, both of these factors could explain some of the variation in the observed associations. These preliminary data support the need for prospective studies in populations at risk for obesity.National Institutes of Environmental Health Sciences (R21ES013724

    A proposed framework for the systematic review and integrated assessment (SYRINA) of endocrine disrupting chemicals

    Get PDF
    Background - The issue of endocrine disrupting chemicals (EDCs) is receiving wide attention from both the scientific and regulatory communities. Recent analyses of the EDC literature have been criticized for failing to use transparent and objective approaches to draw conclusions about the strength of evidence linking EDC exposures to adverse health or environmental outcomes. Systematic review methodologies are ideal for addressing this issue as they provide transparent and consistent approaches to study selection and evaluation. Objective methods are needed for integrating the multiple streams of evidence (epidemiology, wildlife, laboratory animal, in vitro, and in silico data) that are relevant in assessing EDCs. Methods - We have developed a framework for the systematic review and integrated assessment (SYRINA) of EDC studies. The framework was designed for use with the International Program on Chemical Safety (IPCS) and World Health Organization (WHO) definition of an EDC, which requires appraisal of evidence regarding 1) association between exposure and an adverse effect, 2) association between exposure and endocrine disrupting activity, and 3) a plausible link between the adverse effect and the endocrine disrupting activity. Results - Building from existing methodologies for evaluating and synthesizing evidence, the SYRINA framework includes seven steps: 1) Formulate the problem; 2) Develop the review protocol; 3) Identify relevant evidence; 4) Evaluate evidence from individual studies; 5) Summarize and evaluate each stream of evidence; 6) Integrate evidence across all streams; 7) Draw conclusions, make recommendations, and evaluate uncertainties. The proposed method is tailored to the IPCS/WHO definition of an EDC but offers flexibility for use in the context of other definitions of EDCs. Conclusions - When using the SYRINA framework, the overall objective is to provide the evidence base needed to support decision making, including any action to avoid/minimise potential adverse effects of exposures. This framework allows for the evaluation and synthesis of evidence from multiple evidence streams. Finally, a decision regarding regulatory action is not only dependent on the strength of evidence, but also the consequences of action/inaction, e.g. limited or weak evidence may be sufficient to justify action if consequences are serious or irreversible.The workshops that supported the writing of this manuscript were funded by the Swedish Foundation for Strategic Environmental Research “Mistra”. LNV was funded by Award Number K22ES025811 from the National Institute of Environmental Health Sciences of the National Institutes of Health. TJW was funded by The Clarence Heller Foundation (A123547), the Passport Foundation, the Forsythia Foundation, the National Institute of Environmental Health Sciences (grants ES018135 and ESO22841), and U.S. EPA STAR grants (RD83467801 and RD83543301). JT was funded by the Academy of Finland and Sigrid Juselius. UH was funded by the Danish EPA. KAK was funded by the Canada Research Chairs program grant number 950–230607

    Paraoxonase 1 Polymorphism and Prenatal Pesticide Exposure Associated with Adverse Cardiovascular Risk Profiles at School Age

    Get PDF
    Background: Prenatal environmental factors might influence the risk of developing cardiovascular disease later in life. The HDL-associated enzyme paraoxonase 1 (PON1) has anti-oxidative functions that may protect against atherosclerosis. It also hydrolyzes many substrates, including organophosphate pesticides. A common polymorphism, PON1 Q192R, affects both properties, but a potential interaction between PON1 genotype and pesticide exposure on cardiovascular risk factors has not been investigated. We explored if the PON1 Q192R genotype affects cardiovascular risk factors in school-age children prenatally exposed to pesticides. Methods: Pregnant greenhouse-workers were categorized as high, medium, or not exposed to pesticides. Their children underwent a standardized examination at age 6-to-11 years, where blood pressure, skin folds, and other anthropometric parameters were measured. PON1-genotype was determined for 141 children (88 pesticide exposed and 53 unexposed). Serum was analyzed for insulin-like growth factor I (IGF-I), insulin-like growth factor binding protein 3 (IGFBP3), insulin and leptin. Body fat percentage was calculated from skin fold thicknesses. BMI results were converted to age and sex specific Z-scores. Results: Prenatally pesticide exposed children carrying the PON1 192R-allele had higher abdominal circumference, body fat content, BMI Z-scores, blood pressure, and serum concentrations of leptin and IGF-I at school age than unexposed children. The effects were related to the prenatal exposure level. For children with the PON1 192QQ genotype, none of the variables was affected by prenatal pesticide exposure. Conclusion: Our results indicate a gene-environment interaction between prenatal pesticide exposure and the PON1 gene. Only exposed children with the R-allele developed adverse cardiovascular risk profiles thought to be associated with the R-allele

    Concentration addition, independent action and generalized concentration addition models for mixture effect prediction of sex hormone synthesis in vitro

    Get PDF
    Humans are concomitantly exposed to numerous chemicals. An infinite number of combinations and doses thereof can be imagined. For toxicological risk assessment the mathematical prediction of mixture effects, using knowledge on single chemicals, is therefore desirable. We investigated pros and cons of the concentration addition (CA), independent action (IA) and generalized concentration addition (GCA) models. First we measured effects of single chemicals and mixtures thereof on steroid synthesis in H295R cells. Then single chemical data were applied to the models; predictions of mixture effects were calculated and compared to the experimental mixture data. Mixture 1 contained environmental chemicals adjusted in ratio according to human exposure levels. Mixture 2 was a potency adjusted mixture containing five pesticides. Prediction of testosterone effects coincided with the experimental Mixture 1 data. In contrast, antagonism was observed for effects of Mixture 2 on this hormone. The mixtures contained chemicals exerting only limited maximal effects. This hampered prediction by the CA and IA models, whereas the GCA model could be used to predict a full dose response curve. Regarding effects on progesterone and estradiol, some chemicals were having stimulatory effects whereas others had inhibitory effects. The three models were not applicable in this situation and no predictions could be performed. Finally, the expected contributions of single chemicals to the mixture effects were calculated. Prochloraz was the predominant but not sole driver of the mixtures, suggesting that one chemical alone was not responsible for the mixture effects. In conclusion, the GCA model seemed to be superior to the CA and IA models for the prediction of testosterone effects. A situation with chemicals exerting opposing effects, for which the models could not be applied, was identified. In addition, the data indicate that in non-potency adjusted mixtures the effects cannot always be accounted for by single chemicals

    Maternal blood cadmium, lead and arsenic levels, nutrient combinations, and offspring birthweight

    Get PDF
    Abstract Background Cadmium (Cd), lead (Pb) and arsenic (As) are common environmental contaminants that have been associated with lower birthweight. Although some essential metals may mitigate exposure, data are inconsistent. This study sought to evaluate the relationship between toxic metals, nutrient combinations and birthweight among 275 mother-child pairs. Methods Non-essential metals, Cd, Pb, As, and essential metals, iron (Fe), zinc (Zn), selenium (Se), copper (Cu), calcium (Ca), magnesium (Mg), and manganese (Mn) were measured in maternal whole blood obtained during the first trimester using inductively coupled plasma mass spectrometry. Folate concentrations were measured by microbial assay. Birthweight was obtained from medical records. We used quantile regression to evaluate the association between toxic metals and nutrients due to their underlying wedge-shaped relationship. Ordinary linear regression was used to evaluate associations between birth weight and toxic metals. Results After multivariate adjustment, the negative association between Pb or Cd and a combination of Fe, Se, Ca and folate was robust, persistent and dose-dependent (p < 0.05). However, a combination of Zn, Cu, Mn and Mg was positively associated with Pb and Cd levels. While prenatal blood Cd and Pb were also associated with lower birthweight. Fe, Se, Ca and folate did not modify these associations. Conclusion Small sample size and cross-sectional design notwithstanding, the robust and persistent negative associations between some, but not all, nutrient combinations with these ubiquitous environmental contaminants suggest that only some recommended nutrient combinations may mitigate toxic metal exposure in chronically exposed populations. Larger longitudinal studies are required to confirm these findings
    corecore