3,948 research outputs found

    Radiative diffusivity factors in cirrus and stratocumulus clouds: Application to two-stream models

    Get PDF
    A diffusion-like description of radiative transfer in clouds and the free atmosphere is often used. The two stream model is probably the best known example of such a description. The main idea behind the approach is that only the first few moments of radiance are needed to describe the radiative field correctly. Integration smooths details of the angular distribution of specific intensity and it is assumed that the closure parameters of the theory (diffusivity factors) are only weakly dependent on the distribution. The diffusivity factors are investigated using the results obtained from both Stratocumulus and Cirrus phases of FIRE experiment. A new theoretical framework is described in which two (upwards and downwards) diffusivity factors are used and a detailed multistream model is used to provide further insight about both the diffusivity factors and their dependence on scattering properties of clouds

    The unquenched Upsilon spectrum

    Full text link
    We describe the bottomonium spectrum obtained on the UKQCD dynamical ensembles and its comparison to quenched results. We include a determination of alpha_s and m_b from the dynmaical results.Comment: Lattice 2000 (Heavy Quark Physics

    Sensitivity of depth of maximum and absorption depth of EAS to hadron production mechanism

    Get PDF
    Comparison of experimental data on depth of extensive air showers (EAS) development maximum in the atmosphere, T sub M and path of absorption, lambda, in the lower atmosphere of EAS with fixed particle number in the energy region eV with the results of calculation show that these parameters are sensitive mainly to the inelastic interaction cross section and scaling violation in the fragmentation and pionization region. The data are explained in a unified manner within the framework of a model in which scaling is violated slightly in the fragmentation region and strongly in the pionization region at primary cosmic rays composition close to the normal one and a permanent increase of inelastic interaction cross section. It is shown that, while interpreting the experimental data, disregard of two methodical points causes a systematic shift in T sub M: (1) shower selection system; and (2) EAS electron lateral distribution when performing the calculations on basis of which the transfer is made from the Cerenkov pulse FWHM to the depth of shower maximum, T sub M

    CO ro-vibrational lines in HD100546: A search for disc asymmetries and the role of fluorescence

    Get PDF
    We have studied the emission of CO ro-vibrational lines in the disc around the Herbig Be star HD100546 with the final goal of using these lines as a diagnostic to understand inner disc structure in the context of planet formation. High-resolution IR spectra of CO ro-vibrational emission at eight different position angles were taken with CRIRES at the VLT. From these spectra flux tables, CO ro-vibrational line profiles, and population diagrams were produced. We have investigated variations in the line profile shapes and line strengths as a function of slit position angle. We used the thermochemical disc modelling code ProDiMo based on the chemistry, radiation field, and temperature structure of a previously published model for HD100546. Comparing observations and the model, we investigated the possibility of disc asymmetries, the excitation mechanism (UV fluorescence), the geometry, and physical conditions of the inner disc. The observed CO ro-vibrational lines are largely emitted from the inner rim of the outer disc at 10-13 AU. The line shapes are similar for all v levels and line fluxes from all vibrational levels vary only within one order of magnitude. All line profile asymmetries and variations can be explained with a symmetric disc model to which a slit correction and pointing offset is applied. Because the angular size of the CO emitting region (10-13 AU) and the slit width are comparable the line profiles are very sensitive to the placing of the slit. The model reproduces the line shapes and the fluxes of the v=1-0 lines as well as the spatial extent of the CO ro-vibrational emission. It does not reproduce the observed band ratios of 0.5-0.2 with higher vibrational bands. We find that lower gas volume densities at the surface of the inner rim of the outer disc can make the fluorescence pumping more effcient and reproduce the observed band ratios.Comment: 20 pages, 21 figure

    The Crisis of Finance-Dominated Capitalism in the Euro Area, Deficiencies in the Economic Policy Architecture, and Deflationary Stagnation Policies

    Full text link
    * For a more detailed elaboration on the macroeconomic theory of finance-dominated capitalism, see the respective chapters in my book The Macroeconomics of Finance-dominated Capitalism – and Its Crisis (Hein 2012a). The present paper is based on this theory, and it extends and updates the analysis of the euro crisis I have presented in Hein (2012b). I would like to thank Achim Truger for his helpful comments and Matthias Mundt for his valuable research assistance. The Levy Economics Institute Working Paper Collection presents research in progress by Levy Institute scholars and conference participants. The purpose of the series is to disseminate ideas to and elicit comments from academics and professionals. Levy Economics Institute of Bard College, founded in 1986, is a nonprofit, nonpartisan, independently funded research organization devoted to public service. Through scholarship and economic research it generates viable, effective public policy responses to important economic problems that profoundly affect the quality of life in the United States and abroad

    Coherent control of trapped ions using off-resonant lasers

    Full text link
    In this paper we develop a unified framework to study the coherent control of trapped ions subject to state-dependent forces. Taking different limits in our theory, we can reproduce two different designs of a two-qubit quantum gate --the pushing gate [1] and the fast gates based on laser pulses from Ref. [2]--, and propose a new design based on continuous laser beams. We demonstrate how to simulate Ising Hamiltonians in a many ions setup, and how to create highly entangled states and induce squeezing. Finally, in a detailed analysis we identify the physical limits of this technique and study the dependence of errors on the temperature. [1] J.I. Cirac, P. Zoller, Nature, 404, 579, 2000. [2] J.J. Garcia-Ripoll, P. Zoller, J.I. Cirac, PRL 67, 062318, 200

    Microwave response of vortices in superconducting thin films of Re and Al

    Full text link
    Vortices in superconductors driven at microwave frequencies exhibit a response related to the interplay between the vortex viscosity, pinning strength, and flux creep effects. At the same time, the trapping of vortices in superconducting microwave resonant circuits contributes excess loss and can result in substantial reductions in the quality factor. Thus, understanding the microwave vortex response in superconducting thin films is important for the design of such circuits, including superconducting qubits and photon detectors, which are typically operated in small, but non-zero, magnetic fields. By cooling in fields of the order of 100 ÎĽ\muT and below, we have characterized the magnetic field and frequency dependence of the microwave response of a small density of vortices in resonators fabricated from thin films of Re and Al, which are common materials used in superconducting microwave circuits. Above a certain threshold cooling field, which is different for the Re and Al films, vortices become trapped in the resonators. Vortices in the Al resonators contribute greater loss and are influenced more strongly by flux creep effects than in the Re resonators. This different behavior can be described in the framework of a general vortex dynamics model.Comment: Published in Physical Review B 79,174512(2009); preprint version with higher resolution figures available at http://physics.syr.edu/~bplourde/bltp-publications.ht

    Mode-resolved reciprocal space mapping of electron-phonon interaction in the Weyl semimetal candidate Td-WTe2_2

    Full text link
    The selective excitation of coherent phonons provides unique capabilities to control fundamental properties of quantum materials on ultrafast time scales. For instance, in the presence of strong electron-phonon coupling, the electronic band structure can become substantially modulated. Recently, it was predicted that by this means even topologically protected states of matter can be manipulated and, ultimately, be destroyed: For the layered transition metal dichalcogenide Td-WTe2_2, pairs of Weyl points are expected to annihilate as an interlayer shear mode drives the crystalline structure towards a centrosymmetric phase. By monitoring the changes in the electronic structure of Td-WTe2_2 with femtosecond resolution, we provide here direct experimental evidence that the coherent excitation of the shear mode acts on the electronic states near the Weyl points. Band structure data in comparison with our results imply, furthermore, the periodic reduction in the spin splitting of bands near the Fermi energy, a distinct electronic signature of the non-centrosymmetric Td ground state of WTe2_2. The comparison with higher-frequency coherent phonon modes finally proves the shear mode-selectivity of the observed changes in the electronic structure. Our real-time observations reveal direct experimental insights into electronic processes that are of vital importance for a coherent phonon-induced topological phase transition in Td-WTe2_2.Comment: 28 pages, 17 figure

    Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation

    Get PDF
    Magnetic Resonance Imaging (MRI) is widely used in routine clinical diagnosis and treatment. However, variations in MRI acquisition protocols result in different appearances of normal and diseased tissue in the images. Convolutional neural networks (CNNs), which have shown to be successful in many medical image analysis tasks, are typically sensitive to the variations in imaging protocols. Therefore, in many cases, networks trained on data acquired with one MRI protocol, do not perform satisfactorily on data acquired with different protocols. This limits the use of models trained with large annotated legacy datasets on a new dataset with a different domain which is often a recurring situation in clinical settings. In this study, we aim to answer the following central questions regarding domain adaptation in medical image analysis: Given a fitted legacy model, 1) How much data from the new domain is required for a decent adaptation of the original network?; and, 2) What portion of the pre-trained model parameters should be retrained given a certain number of the new domain training samples? To address these questions, we conducted extensive experiments in white matter hyperintensity segmentation task. We trained a CNN on legacy MR images of brain and evaluated the performance of the domain-adapted network on the same task with images from a different domain. We then compared the performance of the model to the surrogate scenarios where either the same trained network is used or a new network is trained from scratch on the new dataset.The domain-adapted network tuned only by two training examples achieved a Dice score of 0.63 substantially outperforming a similar network trained on the same set of examples from scratch.Comment: 8 pages, 3 figure
    • …
    corecore