Magnetic Resonance Imaging (MRI) is widely used in routine clinical diagnosis
and treatment. However, variations in MRI acquisition protocols result in
different appearances of normal and diseased tissue in the images.
Convolutional neural networks (CNNs), which have shown to be successful in many
medical image analysis tasks, are typically sensitive to the variations in
imaging protocols. Therefore, in many cases, networks trained on data acquired
with one MRI protocol, do not perform satisfactorily on data acquired with
different protocols. This limits the use of models trained with large annotated
legacy datasets on a new dataset with a different domain which is often a
recurring situation in clinical settings. In this study, we aim to answer the
following central questions regarding domain adaptation in medical image
analysis: Given a fitted legacy model, 1) How much data from the new domain is
required for a decent adaptation of the original network?; and, 2) What portion
of the pre-trained model parameters should be retrained given a certain number
of the new domain training samples? To address these questions, we conducted
extensive experiments in white matter hyperintensity segmentation task. We
trained a CNN on legacy MR images of brain and evaluated the performance of the
domain-adapted network on the same task with images from a different domain. We
then compared the performance of the model to the surrogate scenarios where
either the same trained network is used or a new network is trained from
scratch on the new dataset.The domain-adapted network tuned only by two
training examples achieved a Dice score of 0.63 substantially outperforming a
similar network trained on the same set of examples from scratch.Comment: 8 pages, 3 figure