44 research outputs found

    Effects of Bedrock Landsliding on Cosmogenically Determined Erosion Rates

    Get PDF
    The successful quantification of long-term erosion rates underpins our understanding of landscape. formation, the topographic evolution of mountain ranges, and the mass balance within active orogens. The measurement of in situ-produced cosmogenic radionuclides (CRNs) in fluvial and alluvial sediments is perhaps the method with the greatest ability to provide such long-term erosion rates. In active orogens, however, deep-seated bedrock landsliding is an important erosional process, the effect of which on CRN-derived erosion rates is largely unquantified. We present a numerical simulation of cosmogenic nuclide production and distribution in landslide-dominated catchments to address the effect of bedrock landsliding on cosmogenic erosion rates in actively eroding landscapes. Results of the simulation indicate that the temporal stability of erosion rates determined from CRN concentrations in sediment decreases with increased ratios of landsliding to sediment detachment rates within a given catchment area, and that larger catchment areas must be sampled with increased frequency of landsliding in order to accurately evaluate long-term erosion rates. In addition, results of this simulation suggest that sediment sampling for CRNs is the appropriate method for determining long-term erosion rates in regions dominated by mass-wasting processes, while bedrock surface sampling for CRNs is generally an ineffective means of determining long-term erosion rates. Response times of CRN concentrations to changes in erosion rate indicate that climatically driven cycles of erosion may be detected relatively quickly after such changes occur, but that complete equilibration of CRN concentrations to new erosional conditions may take tens of thousands of years. Simulation results of CRN erosion rates are compared with a new, rich dataset of CRN concentrations from the Nepalese Himalaya, supporting conclusions drawn from the simulation

    Eroding Australia: rates and processes from Bega Valley to Arnhem Land

    Get PDF
    Abstract: We report erosion rates determined from in situ produced cosmogenic 10 Be across a spectrum of Australian climatic zones, from the soil-mantled SE Australian escarpment through semi-arid bedrock ranges of southern and central Australia, to soil-mantled ridges at a monsoonal tropical site near the Arnhem escarpment. Climate has a major effect on the balance between erosion and transport and also on erosion rate: the highest rates, averaging 35 m Ma 21 , were from soil-mantled, transport-limited spurs in the humid temperate region around the base of the SE escarpment; the lowest, averaging about 1.5 m Ma 21 , were from the steep, weatheringlimited, rocky slopes of Kings Canyon and Mt Sonder in semi-arid central Australia. Between these extremes, other factors come into play including rock-type, slope, and recruitment of vegetation. We measured intermediate average erosion rates from rocky slopes in the semi-arid Flinders and MacDonnell ranges, and from soil-mantled sites at both semi-arid Tyler Pass in central Australia and the tropical monsoonal site. At soil-mantled sites in both the SE and tropical north, soil production generally declines exponentially with increasing soil thickness, although at the tropical site this relationship does not persist under thin soil thicknesses and the relationship here is 'humped'. Results from Tyler Pass show uniform soil thicknesses and soil production rates of about 6.5 m Ma 21 , supporting a longstanding hypothesis that equilibrium, soil-mantled hillslopes erode in concert with stream incision and form convex-up spurs of constant curvature. Moreover, weathering-limited slopes and spurs also occur in the same region: the average erosion rate for rocky sandstone spurs at Glen Helen is 7 m Ma 21 , similar to the Tyler Pass soil-mantled slopes, whereas the average rate for high, quartzite spurs at Mount Sonder is 1.8 m Ma 21 . The extremely low rates measured across bedrock-dominated landscapes suggest that the ridge-valley topography observed today is likely to have been shaped as long ago as the Late Miocene. These rates and processes quantified across different, undisturbed landscapes provide critical data for landscape evolution models

    Topographic control of asynchronous glacial advances: A case study from Annapurna, Nepal

    Get PDF
    Differences in the timing of glacial advances, which are commonly attributed to climatic changes, can be due to variations in valley topography. Cosmogenic 10Be dates from 24 glacial moraine boulders in 5 valleys define two age populations, late-glacial and early Holocene. Moraine ages correlate with paleoglacier valley hypsometries. Moraines in valleys with lower maximum altitudes date to the lateglacial, whereas those in valleys with higher maximum altitudes are early Holocene. Two valleys with similar equilibrium-line altitudes (ELAs), but contrasting ages, are \u3c 5 km apart and share the same aspect, such that spatial differences in climate can be excluded. A glacial mass-balance cellular automata model of these two neighboring valleys predicts that change from a cooler-drier to warmer-wetter climate (as at the Holocene onset) would lead to the glacier in the higher altitude catchment advancing, while the lower one retreats or disappears, even though the ELA only shifted by ~120 m

    Himalayan landslide-dam lake record

    Get PDF
    Abstract About 5400 cal yr BP, a large landslide formed a N400-m-tall dam in the upper Marsyandi River, central Nepal. The resulting lacustrine and deltaic deposits stretched N 7 km upstream, reaching a thickness of 120 m. 14 C dating of 7 wood fragments reveals that the aggradation and subsequent incision occurred remarkably quickly (∼ 500 yr). Reconstructed volumes of lacustrine (∼ 0.16 km 3 ) and deltaic (∼ 0.09 km 3 ) deposits indicate a bedload-to-suspended load ratio of 1:2, considerably higher than the ≤1:10 that is commonly assumed. At the downstream end of the landslide dam, the river incised a new channel through ≥ 70 m of Greater Himalayan gneiss, requiring a minimum bedrock incision rate of 13 mm/ yr over last 5400 yr. The majority of incision presumably occurred over a fraction of this time, suggesting much higher rates. The high bedload ratio from such an energetic mountain river is a particularly significant addition to our knowledge of sediment flux in orogenic environments

    Forecasting the response of Earth's surface to future climatic and land use changes: a review of methods and research needs

    Get PDF
    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail

    Forecasting the Response of Earth\u27s Surface to Future Climatic and Land Use Changes: A Review of Methods and Research Needs

    Get PDF
    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth\u27s surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail
    corecore