1,199 research outputs found

    L'epidèmia de pesta a Llissà de Munt als anys 1651-1654

    Get PDF

    Polymeric routes to silicon carbide and silicon oxycarbide CMC

    Get PDF
    An overview of two approaches to the formation of ceramic composite matrices from polymeric precursors is presented. Copolymerization of alkyl- and alkenylsilanes (RSiH3) represents a new precursor system for the production of Beta-SiC on pyrolysis, with copolymer composition controlling polymer structure, char yield, and ceramic stoichiometry and morphology. Polysilsesquioxanes which are synthesized readily and can be handled in air serve as precursors to Si-C-O ceramics. Copolymers of phenyl and methyl silsesquioxanes display rheological properties favorable for composite fabrication; these can be tailored by control of pH, water/methoxy ratio and copolymer composition. Composites obtained from these utilize a carbon coated, eight harness satin weave Nicalon cloth reinforcement. The material exhibits nonlinear stress-strain behavior in tension

    Shifted energy fluxes, increased Bowen ratios, and reduced thaw depths linked with drainage-induced changes in permafrost ecosystem structure

    Get PDF
    Hydrologic conditions are a key factor in Arctic ecosystems, with strong influences on ecosystem structure and related effects on biogeophysical and biogeochemical processes. With systematic changes in water availability expected for large parts of the northern high-latitude region in the coming centuries, knowledge on shifts in ecosystem functionality triggered by altered water levels is crucial for reducing uncertainties in climate change predictions. Here, we present findings from paired ecosystem observations in northeast Siberia comprising a drained and a control site. At the drainage site, the water table has been artificially lowered by up to 30 cm in summer for more than a decade. This sustained primary disturbance in hydrologic conditions has triggered a suite of secondary shifts in ecosystem properties, including vegetation community structure, snow cover dynamics, and radiation budget, all of which influence the net effects of drainage. Reduced thermal conductivity in dry organic soils was identified as the dominating drainage effect on energy budget and soil thermal regime. Through this effect, reduced heat transfer into deeper soil layers leads to shallower thaw depths, initially leading to a stabilization of organic permafrost soils, while the long-term effects on permafrost temperature trends still need to be assessed. At the same time, more energy is transferred back into the atmosphere as sensible heat in the drained area, which may trigger a warming of the lower atmospheric surface layer.Peer reviewe

    Inverse modeling of CO2 sources and sinks using satellite data: a synthetic inter-comparison of measurement techniques and their performance as a function of space and time

    Get PDF
    Currently two polar orbiting satellite instruments measure CO<sub>2</sub> concentrations in the Earth's atmosphere, while other missions are planned for the coming years. In the future such instruments might become powerful tools for monitoring changes in the atmospheric CO<sub>2</sub> abundance and to improve our quantitative understanding of the leading processes controlling this. At the moment, however, we are still in an exploratory phase where first experiences are collected and promising new space-based measurement concepts are investigated. This study assesses the potential of some of these concepts to improve CO<sub>2</sub> source and sink estimates obtained from inverse modelling. For this purpose the performance of existing and planned satellite instruments is quantified by synthetic simulations of their ability to reduce the uncertainty of the current source and sink estimates in comparison with the existing ground-based network of sampling sites. Our high resolution inversion of sources and sinks (at 8&deg;x10&deg;) allows us to investigate the variation of instrument performance in space and time and at various temporal and spatial scales. The results of our synthetic tests clearly indicate that the satellite performance increases with increasing sensitivity of the instrument to CO<sub>2</sub> near the Earth's surface, favoring the near infra-red technique. Thermal infrared instruments, on the contrary, reach a better global coverage, because the performance in the near infrared is reduced over the oceans owing to a low surface albedo. Near infra-red sounders can compensate for this by measuring in sun-glint, which will allow accurate measurements over the oceans, at the cost, however, of a lower measurement density. Overall, the sun-glint pointing near infrared instrument is the most promising concept of those tested. We show that the ability of satellite instruments to resolve fluxes at smaller temporal and spatial scales is also related to surface sensitivity. All the satellite instruments performed relatively well over the continents resulting mainly from the larger prior flux uncertainties over land than over the oceans. In addition, the surface networks are rather sparse over land increasing the additional benefit of satellite measurements there. Globally, challenging satellite instrument precisions are needed to compete with the current surface network (about 1ppm for weekly and 8&deg;x10&deg; averaged SCIAMACHY columns). Regionally, however, these requirements relax considerably, increasing to 5ppm for SCIAMACHY over tropical continents. This points not only to an interesting research area using SCIAMACHY data, but also to the fact that satellite requirements should not be quantified by only a single number. The applicability of our synthetic results to real satellite instruments is limited by rather crude representations of instrument and data retrieval related uncertainties. This should receive high priority in future work

    Source attribution of air pollution by spatial scale separation using high spatial density networks of low cost air quality sensors

    Get PDF
    To carry out detailed source attribution for air quality assessment it is necessary to distinguish pollutant contributions that arise from local emissions from those attributable to non-local or regional emission sources. Frequently this requires the use of complex models and inversion methods, prior knowledge or assumptions regarding the pollution environment. In this paper we demonstrate how high spatial density and fast response measurements from low-cost sensor networks may facilitate this separation. A purely measurement-based approach to extract underlying pollution levels (baselines) from the measurements is presented exploiting the different relative frequencies of local and background pollution variations. This paper shows that if high spatial and temporal coverage of air quality measurements are available, the different contributions to the total pollution levels, namely the regional signal as well as near and far field local sources, can be quantified. The advantage of using high spatial resolution observations, as can be provided by low-cost sensor networks, lies in the fact that no prior assumptions about pollution levels at individual deployment sites are required. The methodology we present here, utilising measurements of carbon monoxide (CO), has wide applicability, including additional gas phase species and measurements obtained using reference networks. While similar studies have been performed, this is the first study using networks at this density, or using low cost sensor networks.The authors thank EPSRC (EP/E001912/1) for funding for the Message project. IH thanks the German National Academic Foundation for funding of MPhil degree.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S1352231015300583#

    Peel and peel again

    Get PDF
    Aim: To determine if the internal limiting membrane (ILM) was present in the epiretinal membrane (ERM) when we deliberately tried to perform a "double peel" for macular pucker. Methods: Pars-plana vitrectomy and a "double peel" were carried out. The ERM and ILM were stained with Trypan Blue and peeled separately over the same area. The amount of ERM present in ILM specimens and the amount of ILM present in ERM specimens were evaluated by histological examination. Results: Seventeen eyes in 17 patients were included. It was possible to double peel in all cases. Five of 17 ERM specimens (29%) contained ILM fragments. When ILM was present on the ERM, it represented less than 50% of the sample. One ILM specimen was lost as result of an administrative error; of the remaining 16 specimens, residual ERM was found in six, and cellular remnants were observed on the vitreous surface in a further six of the ILMs. Clinically, no recurrence of ERM was found. Conclusion: ILM was present in some ERM specimens seemingly over the same area that an intact ILM was subsequently peel. We speculate that the ILM in the ERM represent a secondary basement membrane and that the surgical plane of dissection for most ERM peel is between the ERM and the native ILM, making it feasible to double peel routinely.published_or_final_versio

    Electronic structure of warm dense copper studied by ultrafast x-ray absorption spectroscopy

    Get PDF
    We use time-resolved x-ray absorption spectroscopy to investigate the unoccupied electronic density of states of warm dense copper that is produced isochorically through the absorption of an ultrafast optical pulse. The temperature of the superheated electron-hole plasma, which ranges from 4000 to 10 000 K, was determined by comparing the measured x-ray absorption spectrum with a simulation. The electronic structure of warm dense copper is adequately described with the high temperature electronic density of state calculated by the density functional theory. The dynamics of the electron temperature is consistent with a two-temperature model, while a temperature-dependent electron-phonon coupling parameter is necessary

    Preceramic Polymers for Use as Fiber Coatings

    Get PDF
    Polymeric precursors to Si-C-O, SI-B-N and Si-C were evaluated for use as ceramic interfaces in ceramic matrix composites. Use of the preceramic polymers allows for easy dip coating of fibers from dilute solutions of a polymer, which are then pyrolyzed to obtain the ceramic. SCS-0 fibers (Textron Specialty Materials, Lowell, MA) were coated with polymers from three systems: polysilsesquioxanes, polyborosilazanes and polycarbosilanes. The polysilsesquioxane systems were shown to produce either silicon oxycarbide or silicon oxynitride, depending on the pyrolysis conditions, and demonstrated some promise in an RBSN (reaction-bonded silicon nitride) matrix model system. Polyborosilazanes were shown, in studies of bulk polymers, to give rise to oxidation resistant Si-B-N ceramics which remain amorphous to temperatures of 1600 C, and should therefore provide a low modulus interface. Polycarbosilanes produce amorphous carbon-rich Si-C materials which have demonstrated oxidation resistance

    Conversion of polymers of methyl- and vinylsilane to Si-C ceramics

    Get PDF
    Poly(methylsilane) and poly(vinylsilane) were synthesized using a titanocene catalyst, and their pyrolytic conversion to ceramics was followed using a combination of thermal analysis and infrared spectroscopy. The two polymers have distinctly different backbone structures, as determined by Si NMR; methylsilane polymerizes to a polysilane, while vinylsilane polymers have predominately polycarbosilane backbone, with some polysilane structure as well. The pyrolysis path and char yield were dependent primarily on backbone structure, with little influence of polymer molecular weight. The majority of the weight loss on conversion occurs below 650 degrees C, although bond rearrangement continues to 1400 degrees C. Poly(vinylsilane) produced a C-rich Si-C ceramic in which the carbon was dispersed on a sufficiently fine level to show resistance to oxidation on heating in air to 1400 degrees C
    corecore