47 research outputs found

    The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)

    Get PDF
    The observation of neutrinoless double-beta decay (0νββ{\nu}{\beta}{\beta}) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ∼\sim0.1 count /(FWHM⋅\cdott⋅\cdotyr) in the region of the signal. The current generation 76^{76}Ge experiments GERDA and the MAJORANA DEMONSTRATOR utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ{\nu}{\beta}{\beta} signal region of all 0νββ{\nu}{\beta}{\beta} experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76^{76}Ge experiment. The collaboration aims to develop a phased 0νββ{\nu}{\beta}{\beta} experimental program with discovery potential at a half-life approaching or at 102810^{28} years, using existing resources as appropriate to expedite physics results.Comment: Proceedings of the MEDEX'17 meeting (Prague, May 29 - June 2, 2017

    The influence of speed and size on avian terrestrial locomotor biomechanics: predicting locomotion in extinct theropod dinosaurs

    Get PDF
    How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF), the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete ‘walking’ and ‘running’ gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79–93% of the observed variation in kinematics and 69–83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation

    The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)

    Get PDF

    Cross-bridge cycling theories cannot explain high-speed lengthening behavior in frog muscle.

    Get PDF
    The Huxley 1957 model of cross-bridge cycling accounts for the shortening force-velocity curve of striated muscle with great precision. For forced lengthening, however, the model diverges from experimental results. This paper examines whether it is possible to bring the model into better agreement with experiments, and if so what must be assumed about the mechanical capabilities of cross-bridges. Of particular interest is how introduction of a maximum allowable cross-bridge strain, as has been suggested by some experiments, affects the predictions of the model. Because some differences in the models are apparent only at high stretch velocities, we acquired new force-velocity data to permit a comparison with experiment. Using whole, isolated frog sartorius muscles at 2 degrees C, we stretched active muscle at speeds up to and exceeding 2 Vmax. Force during stretch was always greater than the peak isometric level, even during the fastest stretches, and was approximately independent of velocity for stretches faster than 0.5 Vmax. Although certain modifications to the model brought it into closer correspondence with the experiments, the accompanying requirements on cross-bridge extensibility were unreasonable. We suggest (both in this paper and the one that follows) that sarcomere inhomogeneities, which have been implicated in such phenomena as "tension creep" and "permanent extra tension," may also play an important role in determining the basic force-velocity characteristics of muscle

    The role of gravity in human walking: pendular energy exchange, external work and optimal speed

    No full text
    During walking on Earth, at 1.0 g of gravity, the work done by the muscles to maintain the motion of the centre of mass of the body (Wext) is reduced by a pendulum-like exchange between gravitational potential energy and kinetic energy. The weight-specific Wext per unit distance attains a minimum of 0.3 J kg−1 m−1 at about 4.5 km h−1 in adults.The effect of a gravity change has been studied during walking on a force platform fixed to the floor of an aircraft undergoing flight profiles which resulted in a simulated gravity of 0.4 and 1.5 times that on Earth.At 0.4 g, such as on Mars, the minimum Wext was 0.15 J kg−1 m−1, half that on Earth and occurred at a slower speed, about 2.5 km h−1. The range of walking speeds is about half that on Earth.At 1.5 g, the lowest value of Wext was 0.60 J kg−1 m−1, twice that on Earth; it was nearly constant up to about 4.3 km h−1 and then increased with speed. The range of walking speeds is probably greater than that on Earth.A model is presented in which the speed for an optimum exchange between potential and kinetic energy, the ‘optimal speed’, is predicted by the balance between the forward deceleration due to the lift of the body against gravity and the forward deceleration due to the impact against the ground.In conclusion, over the range studied, gravity increases the work required to walk, but it also increases the range of walking speeds
    corecore