15 research outputs found

    PCM4EU and PRIME-ROSE:Collaboration for implementation of precision cancer medicine in Europe

    Get PDF
    Background: In the two European Union (EU)-funded projects, PCM4EU (Personalized Cancer Medicine for all EU citizens) and PRIME-ROSE (Precision Cancer Medicine Repurposing System Using Pragmatic Clinical Trials), we aim to facilitate implementation of precision cancer medicine (PCM) in Europe by leveraging the experience from ongoing national initiatives that have already been particularly successful. Patients and methods: PCM4EU and PRIME-ROSE gather 17 and 24 partners, respectively, from 19 European countries. The projects are based on a network of Drug Rediscovery Protocol (DRUP)-like clinical trials that are currently ongoing or soon to start in 11 different countries, and with more trials expected to be established soon. The main aims of both the projects are to improve implementation pathways from molecular diagnostics to treatment, and reimbursement of diagnostics and tumour-tailored therapies to provide examples of best practices for PCM in Europe. Results: PCM4EU and PRIME-ROSE were launched in January and July 2023, respectively. Educational materials, including a podcast series, are already available from the PCM4EU website (http://www.pcm4eu. eu). The first reports, including an overview of requirements for the reimbursement systems in participating countries and a guide on patient involvement, are expected to be published in 2024. Conclusion: European collaboration can facilitate the implementation of PCM and thereby provide affordable and equitable access to precision diagnostics and matched therapies for more patients.</p

    PCM4EU and PRIME-ROSE:Collaboration for implementation of precision cancer medicine in Europe

    Get PDF
    Background: In the two European Union (EU)-funded projects, PCM4EU (Personalized Cancer Medicine for all EU citizens) and PRIME-ROSE (Precision Cancer Medicine Repurposing System Using Pragmatic Clinical Trials), we aim to facilitate implementation of precision cancer medicine (PCM) in Europe by leveraging the experience from ongoing national initiatives that have already been particularly successful. Patients and methods: PCM4EU and PRIME-ROSE gather 17 and 24 partners, respectively, from 19 European countries. The projects are based on a network of Drug Rediscovery Protocol (DRUP)-like clinical trials that are currently ongoing or soon to start in 11 different countries, and with more trials expected to be established soon. The main aims of both the projects are to improve implementation pathways from molecular diagnostics to treatment, and reimbursement of diagnostics and tumour-tailored therapies to provide examples of best practices for PCM in Europe. Results: PCM4EU and PRIME-ROSE were launched in January and July 2023, respectively. Educational materials, including a podcast series, are already available from the PCM4EU website (http://www.pcm4eu. eu). The first reports, including an overview of requirements for the reimbursement systems in participating countries and a guide on patient involvement, are expected to be published in 2024. Conclusion: European collaboration can facilitate the implementation of PCM and thereby provide affordable and equitable access to precision diagnostics and matched therapies for more patients.</p

    The prognostic significance of tumour cell detection in the peripheral blood versus the bone marrow in 733 early-stage breast cancer patients

    Get PDF
    Abstract Introduction The detection of circulating tumour cells (CTCs) in the peripheral blood and disseminated tumour cells (DTCs) in the bone marrow are promising prognostic tools for risk stratification in early breast cancer. There is, however, a need for further validation of these techniques in larger patient cohorts with adequate follow-up periods. Methods We assayed CTCs and DTCs at primary surgery in 733 stage I or II breast cancer patients with a median follow-up time of 7.6 years. CTCs were detected in samples of peripheral blood mononuclear cells previously stored in liquid-nitrogen using a previously-developed multi-marker quantitative PCR (QPCR)-based assay. DTCs were detected in bone marrow samples by immunocytochemical analysis using anti-cytokeratin antibodies. Results CTCs were detected in 7.9% of patients, while DTCs were found in 11.7%. Both CTC and DTC positivity predicted poor metastasis-free survival (MFS) and breast cancer-specific survival (BCSS); MFS hazard ratio (HR) = 2.4 (P &lt; 0.001)/1.9 (P = 0.006), and BCSS HR = 2.5 (P &lt; 0.001)/2.3 (P = 0.01), for CTC/DTC status, respectively). Multivariate analyses demonstrated that CTC status was an independent prognostic variable for both MFS and BCSS. CTC status also identified a subset of patients with significantly poorer outcome among low-risk node negative patients that did not receive adjuvant systemic therapy (MFS HR 2.3 (P = 0.039), BCSS HR 2.9 (P = 0.017)). Using both tests provided increased prognostic information and indicated different relevance within biologically dissimilar breast cancer subtypes. Conclusions These results support the use of CTC analysis in early breast cancer to generate clinically useful prognostic information

    A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers

    Get PDF
    Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may b

    Amplified Loci on Chromosomes 8 and 17 Predict Early Relapse in ER-Positive Breast Cancers

    Get PDF
    Adjuvant hormonal therapy is administered to all early stage ER+ breast cancers, and has led to significantly improved survival. Unfortunately, a subset of ER+ breast cancers suffer early relapse despite hormonal therapy. To identify molecular markers associated with early relapse in ER+ breast cancer, an outlier analysis method was applied to a published gene expression dataset of 268 ER+ early-stage breast cancers treated with tamoxifen alone. Increased expression of sets of genes that clustered in chromosomal locations consistent with the presence of amplicons at 8q24.3, 8p11.2, 17q12 (HER2 locus) and 17q21.33-q25.1 were each found to be independent markers for early disease recurrence. Distant metastasis free survival (DMFS) after 10 years for cases with any amplicon (DMFS  = 56.1%, 95% CI  = 48.3–63.9%) was significantly lower (P  = 0.0016) than cases without any of the amplicons (DMFS  = 87%, 95% CI  = 76.3% –97.7%). The association between presence of chromosomal amplifications in these regions and poor outcome in ER+ breast cancers was independent of histologic grade and was confirmed in independent clinical datasets. A separate validation using a FISH-based assay to detect the amplicons at 8q24.3, 8p11.2, and 17q21.33-q25.1 in a set of 36 early stage ER+/HER2- breast cancers treated with tamoxifen suggests that the presence of these amplicons are indeed predictive of early recurrence. We conclude that these amplicons may serve as prognostic markers of early relapse in ER+ breast cancer, and may identify novel therapeutic targets for poor prognosis ER+ breast cancers

    Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk

    Get PDF
    In breast cancer, high levels of homeobox protein Hox-B13 (HOXB13) have been associated with disease progression of ER-positive breast cancer patients and resistance to tamoxifen treatment. Since HOXB13 p.G84E is a prostate cancer risk allele, we evaluated the association between HOXB13 germline mutations and breast cancer risk in a previous study consisting of 3,270 familial non-BRCA1/2 breast cancer cases and 2,327 controls from the Netherlands. Although both recurrent HOXB13 mutations p.G84E and p.R217C were not associated with breast cancer risk, the risk estimation for p.R217C was not very precise. To provide more conclusive evidence regarding the role of HOXB13 in breast cancer susceptibility, we here evaluated the association between HOXB13 mutations and increased breast cancer risk within 81 studies of the international Breast Cancer Association Consortium containing 68,521 invasive breast cancer patients and 54,865 controls. Both HOXB13 p.G84E and p.R217C did not associate with the development of breast cancer in European women, neither in the overall analysis (OR = 1.035, 95% CI = 0.859-1.246, P = 0.718 and OR = 0.798, 95% CI = 0.482-1.322, P = 0.381 respectively), nor in specific high-risk subgroups or breast cancer subtypes. Thus, although involved in breast cancer progression, HOXB13 is not a material breast cancer susceptibility gene.Peer reviewe

    PCM4EU and PRIME-ROSE: Collaboration for implementation of precision cancer medicine in Europe

    Get PDF
    &lt;p class="p1"&gt;&lt;strong&gt;Background: &lt;/strong&gt;In the two European Union (EU)-funded projects, PCM4EU (Personalized Cancer Medicine for all EU citizens) and PRIME-ROSE (Precision Cancer Medicine Repurposing System Using Pragmatic Clinical Trials), we aim to facilitate implementation of precision cancer medicine (PCM) in Europe by leveraging the experience from ongoing national initiatives that have already been particularly successful.&lt;/p&gt;&lt;p class="p1"&gt;&lt;strong&gt;Patients and methods: &lt;/strong&gt;PCM4EU and PRIME-ROSE gather 17 and 24 partners, respectively, from 19 European countries. The projects are based on a network of Drug Rediscovery Protocol (DRUP)-like clinical trials that are currently ongoing or soon to start in 11 different countries, and with more trials expected to be established soon. The main aims of both the projects are to improve implementation pathways from molecular diagnostics to treatment, and reimbursement of diagnostics and tumour-tailored therapies to provide examples of best practices for PCM in Europe.&lt;/p&gt;&lt;p class="p1"&gt;&lt;strong&gt;Results: &lt;/strong&gt;PCM4EU and PRIME-ROSE were launched in January and July 2023, respectively. Educational materials, including a podcast series, are already available from the PCM4EU website (&lt;span class="s1"&gt;http://www.pcm4eu.eu&lt;/span&gt;). The first reports, including an overview of requirements for the reimbursement systems in participating countries and a guide on patient involvement, are expected to be published in 2024.&lt;/p&gt;&lt;p class="p1"&gt;&lt;strong&gt;Conclusion: &lt;/strong&gt;European collaboration can facilitate the implementation of PCM and thereby provide affordable and equitable access to precision diagnostics and matched therapies for more patients.&lt;/p&gt
    corecore