202 research outputs found

    Grasslands of the Great Plains: Their Nature and Use

    Get PDF
    This book is the result of a long-felt need by the authors and their students for a comprehensive survey of the numerous studies that have been made on plains grasslands. From southern Texas far into Saskatchewan the mid and short grasses form a magnificent prairie nearly 2,500 miles in length and approximately 400 miles wide. Kinds of communities, their composition, nature, significance and uses are fully described. Such information is of value not only to students, range technicians, and other professional conservationists, but also to ranchers and other land owners-in fact, to anyone interested in the economy of our midwestern grasslands. The damaging effects of drought on forage production in this unstable climate and the restoration of the plant cover are of such great importance that they have been given special attention. Climate, soils, and. the proper use of the forage for its sustained production are described. A third of a century of study and experimentation in plains grassland by the authors permits accurate description and interpretation. Important studies that have been made on the vegetation since the coming of the white man to the present day are reviewed. Early investigations have been recorded in papers, bulletins and books, many of which are now out of print or difficult of access. Therefore permission was asked and promptly given by the Carnegie Institution of Washington, Duke University Press, Ecological Monographs, Ecology, and several other journals to re-use materials originally furnished by the authors. Such sources are carefully cited in the text. Only by such cooperation has this book been made possible. This great prairie land has been thoroughly examined as to its way of life both above ground and deep into the soil, which it has helped to build and so efficiently protects. Extensive, long-time investigations have elucidated many problems. The scope of the work has been broadened and deepened by the aid of a large number of advanced students who have sought graduate study in this field. To them, many of whom are today leaders in conservation of range management or in teaching a new generation of students the values of ecology in our economy, we are deeply grateful for their interest and cooperation. Two of them are so familiar with the grasslands of Texas and New Mexico, respectively, that each has contributed a chapter to this book. Both common and scientific names of grasses are according to Hitchcock and Chase (1950) revised Manual of the Grasses of the United States. Other scientific names follow Gleason\u27s New Britton and Brown Illustrated Flora (1952) or Harrington\u27s Manual of the Plants of Colorado (1954). Common names are nearly all according to the second edition (1913) of Britton and Brown or the second edition of Standardized Plant Names (1942). 404 page

    Does it bite? The role of stimuli characteristics on preschoolers’ interactions with robots, insects and a dog

    Get PDF
    While there is increasing interest in the impact of animal interactions upon children’s wellbeing and attitudes, there has been less attention paid to the specific characteristics of the animals which attract and engage children. We used a within-subjects design to explore how differences in animal features (such as their animacy, size, and texture) impacted upon pre-school children’s social and emotional responses. This study examined pre-schoolers’ interactions with two animal-like robots (Teksta and Scoozie), two insect types (stick insects and hissing cockroaches) and a dog (Teasel, a West Highland Terrier). Nineteen preschool participants aged 35-57 months were videoed while interacting with the experimenter, a peer and each stimulus (presented individually). We used both verbal and nonverbal behaviours to evaluate interactions and emotional responses to the stimuli and found that these two measures could be incongruent, highlighting the need for systematic approaches to evaluating children’s interactions with animals. We categorised the content of children’s dialogues in relation to psychological and biological attributes of each stimulus and their distinctions between living and non-living stimuli; the majority of comments were biological, with psychological terms largely reserved for the dog and mammal-like robot only. Comments relating to living qualities revealed ambiguity towards attributes that denote differences between living and non-living creatures. We used a range of nonverbal measures, including willingness to approach and touch stimuli, rates of self-touching, facial expressions of emotion, and touch to others. Insects (hissing cockroaches and stick insects) received the most negative verbal and nonverbal responses. The mammal-like robot (rounded, fluffy body shape, large eyes, and sympathetic sounds) was viewed much more positively than its metallic counterpart, as was the real dog. We propose that these interactions provide information on how children perceive animals and a platform for the examination of human socio-emotional and cognitive development more generally. The children engaged in social referencing to the adult experimenter rather than familiar peers when uncertain about the stimuli presented, suggesting that caregivers have a primary role in shaping children’s responses to animals

    Exploring Aboriginal People\u27s connection to country to strengthen human-nature theoretical perspectives

    Full text link
    Purpose Aboriginal people across Australia have diverse practices, beliefs and knowledges based on thousands of generations of managing and protecting their lands (Country). The intimate relationship Aboriginal people have with their Country is explored in this chapter because such knowledge is important for building insight into the relationship between social and ecological systems. Often in research Aboriginal views have been marginalised from discussions focused on their lands to the detriment of ecosystems and human health. This chapter aims to understand if such marginalisation is evident in Western human–nature relationship discourses.Approach This chapter provides a critical literature review which examines whether Aboriginal people’s diverse understanding of their ecosystems have been incorporated into human–nature theories using the biophilia hypothesis as a starting point. Other concepts explored include solastalgia, topophilia and place.Findings Critiques of these terminologies in the context of Aboriginal people’s connection to Country are limited but such incorporation is viewed in the chapter as a possible mechanism for better understanding human’s connection to nature. The review identified that Aboriginal people’s relationship to Country seems to be underrepresented in the human–nature theory literature.Value This chapter emphasises that the integration of Aboriginal perspectives into research, ecological management and policy can provide better insight into the interrelationships between social and ecological systems

    Gestational Diabetes Is Characterized by Reduced Mitochondrial Protein Expression and Altered Calcium Signaling Proteins in Skeletal Muscle

    Get PDF
    The rising prevalence of gestational diabetes mellitus (GDM) affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM) and obese pregnant women with normal glucose tolerance (ONGT). Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I) subunits (NDUFS3, NDUFV2) and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4) in OGDM (n = 6) vs. ONGT (n = 6). Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (−60–75%) in the OGDM (n = 8) compared with ONGT (n = 10) subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum

    Maternal Obesity during Gestation Impairs Fatty Acid Oxidation and Mitochondrial SIRT3 Expression in Rat Offspring at Weaning

    Get PDF
    In utero exposure to maternal obesity increases the offspring's risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND)21. In the current study, we examined systemic and hepatic adaptations in male Sprague-Dawley offspring from lean and obese dams at PND21. Indirect calorimetry revealed decreases in energy expenditure (p<0.001) and increases in RER values (p<0.001), which were further exacerbated by high fat diet (45% kcals from fat) consumption indicating an impaired ability to utilize fatty acids in offspring of obese dams as analyzed by PRCF. Mitochondrial function is known to be associated with fatty acid oxidation (FAO) in the liver. Several markers of hepatic mitochondrial function were reduced in offspring of obese dams. These included SIRT3 mRNA (p = 0.012) and mitochondrial protein content (p = 0.002), electron transport chain complexes (II, III, and ATPase), and fasting PGC-1α mRNA expression (p<0.001). Moreover, hepatic LCAD, a SIRT3 target, was not only reduced 2-fold (p<0.001) but was also hyperacetylated in offspring of obese dams (p<0.005) suggesting decreased hepatic FAO. In conclusion, exposure to maternal obesity contributes to early perturbations in whole body and liver energy metabolism. Mitochondrial dysfunction may be an underlying event that reduces hepatic fatty acid oxidation and precedes the development of detrimental obesity associated co-morbidities such as insulin resistance and NAFLD

    Maternal Obesity, Overweight and Gestational Diabetes Affect the Offspring Neurodevelopment at 6 and 18 Months of Age – A Follow Up from the PREOBE Cohort

    Get PDF
    The study was registered at www.ClinicalTrials.gov, identifier:NCT01634464).Background: Brain development in fetal life and early infancy is critical to determine lifelong performance in various neuropsychological domains. Metabolic pathologies such as overweight, obesity, and gestational diabetes in pregnant women are prevalent and increasing risk factors that may adversely affect long-term brain development in their offspring.Objective: The objective of this research was to investigate the influence of maternal metabolic pathologies on the neurodevelopment of the offspring at 6 and 18 months of life.Design: This was a prospective case-control study of 331 mother- and child pairs from Granada, Spain. The mothers were included during pregnancy into four groups according to their pre-gestational body mass index and their gestational diabetes status; overweight (n:56), obese (n:64), gestational diabetic (n:79), and healthy normal weight controls (n:132). At 6 months and 18 months we assessed the children with the Bayley III scales of neurodevelopment.Results: At 6 months (n=215), we found significant group differences in cognition composite language, and expressive language. Post hoc test revealed unexpectedly higher scores in the obese group compared to the normal weight group and a similar trend in overweight and diabetic group. The effects on language remained significant after adjusting for confounders with an adjusted odds ratio for a value above median in composite language score of 3.3 (95% CI: 1.1, 10.0; p=0.035) for children of obese mothers. At 18 month (n=197), the offspring born to obese mothers had lost five points in language composite scores and the previous differences in language and cognition was replaced by a suggestive trend of lower gross motor scores in the overweight, obese, and diabetic groups.Conclusions: Infants of obese mothers had a temporary accelerated development of cognition and language, followed by a rapid deceleration until 18 months of age, particularly of language scores. This novel observation prompts further confirmative studies to explore possible placental and neurodevelopmental mechanisms involved.This study was funded by Spanish Ministry of Innovation and Science. Junta de Andalucía: Excellence Projects (P06-CTS-02341); Spanish Ministry of Education (Grant no. SB2010-0025); Spanish Ministry of Economy and Competitiveness (BFU2012-40254-C03-01); Further support was received by Abbott Laboratories, Granada, Spain

    Including Smart Architecture in environments for people with dementia

    Get PDF
    Environments which aim to promote human well-being must address both functional and psychosocial needs. This paper comprises a description of a framework for a smart home environment, which aims to comprehensively address issues of environmental fit, in particular for a person with cognitive impairment associated with dementia, by means of introducing sensing of user affect as a factor in system management of a smart personal life space, and in generation of environmental response, adapting to changing user need. The introduction of affective computing into an intelligent system managing environmental response and adaptation is seen as a critical component in successfully realizing an interactive personal life-space, where a continuous feedback loop operates between user and environment, in real time. The overall intention is to maximize environmental congruence for the user, both functionally and psychosocially, by factoring in adjustment to changing user status. Design thinking, at all scales, is perceived as being essential to achieving a coherent smart environment, where architecture is reframed as interaction design

    Protein and folic acid content in the maternal diet determine lipid metabolism and response to high-fat feeding in rat progeny in an age-dependent manner

    Get PDF
    Maternal diet during gestation can exert a long-term effect on the progeny’s health by programming their developmental scheme and metabolism. The aim of this study is to analyze the influence of maternal diet on lipid metabolism in 10- and 16-week-old rats. Pregnant dams were fed one of four diets: a normal protein and normal folic acid diet (NP-NF), a protein-restricted and normal folic acid diet (PR-NF), a protein-restricted and folic-acid-supplemented diet (PR-FS), or a normal protein and folic-acid-supplemented diet (NP-FS). We also tested whether prenatal nutrition determines the reaction of an organism to a postweaning high-fat diet. Blood biochemistry and biometrical parameters were evaluated. The expression patterns of PPARα, PPARγ, and LXRα in the liver and adipose tissue were examined by real-time PCR. In the 10-week-old, rats folic acid supplementation of the maternal diet was associated with reduced circulating glucose and total cholesterol concentrations (P < 0.01 and P < 0.001, respectively). Neither prenatal diets nor postnatal feeding affected blood insulin concentrations. In the 16-week-old rats, body weight, abdominal fat mass and central adiposity were reduced in the progeny of the folic acid–supplemented dams (P < 0.01, P < 0.001 and P < 0.01, respectively). Maternal protein restriction had no effect on biometry or blood biochemical parameters. Folic acid supplementation of the maternal diet was associated with reduced expression of PPARα, PPARγ, and LXRα in the liver (P < 0.001). Reduced protein content in the maternal diet was associated with increased PPARα mRNA level in the liver (P < 0.001) and reduced LXRα in adipose tissue (P < 0.01). PPARα and PPARγ transcription in the liver, as well as LXRα transcription in adipose tissue, was also dependent on interaction effects between prenatal and postnatal diet compositions. PPARγ transcription in the liver was correlated with the abdominal fat mass, body weight, and calorie intake, while PPARγ transcription in adipose tissue was correlated with reduced body weight and calorie intake. Total serum cholesterol concentration was correlated with LXRα transcription in the liver. Folic acid supplementation of the maternal diet may have favorable effects for lipid metabolism in the progeny, but these effects are modified by the postnatal diet and age. Furthermore, the expression of LXRα, PPARα, and PPARγ in the liver and adipose tissue largely depends on the protein and folic acid content in the maternal diet during gestation. However, the altered transcription profile of these key regulators of lipid metabolism does not straightforwardly explain the observed phenotype
    corecore