8 research outputs found

    Identification of Genomic Regions Associated with Phenotypic Variation between Dog Breeds using Selection Mapping

    Get PDF
    Peer reviewe

    A web resource on DNA tests for canine and feline hereditary diseases

    No full text
    a b s t r a c t Following the first identification of a disease-causing mutation in dogs in 1989 and the more recent completion of canine and feline genome sequences, much progress has been made in the molecular characterization of hereditary diseases in dogs and cats. To increase access to information on diagnosing hereditary diseases in dogs and cats, a web application has been developed to collect, organize and display information on available DNA tests and other supporting information, including gene and chromosomal locations, mutations, primary research citations and disease descriptions. The DNA testing information can be accessed at the URL: http://research.vet.upenn.edu/WSAVA-LabSearch. There are currently 131 molecular genetic tests available for hereditary diseases in dogs and cats offered by 43 laboratories worldwide. This tool should provide clinicians, researchers, breeders and companion animal owners with a single comprehensive, up-to-date and readily searchable webpage for information on hereditary disease testing

    Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds

    No full text
    Background: The domestic dog is a rich resource for mapping the genetic components of phenotypic variation due to its unique population history involving strong artificial selection. Genome-wide association studies have revealed a number of chromosomal regions where genetic variation associates with morphological characters that typify dog breeds. A region on chromosome 10 is among those with the highest levels of genetic differentiation between dog breeds and is associated with body mass and ear morphology, a common motif of animal domestication. We characterised variation in this region to uncover haplotype structure and identify candidate functional variants. Results: We first identified SNPs that strongly associate with body mass and ear type by comparing sequence variation in a 3 Mb region between 19 breeds with a variety of phenotypes. We next genotyped a subset of 123 candidate SNPs in 288 samples from 46 breeds to identify the variants most highly associated with phenotype and infer haplotype structure. A cluster of SNPs that associate strongly with the drop ear phenotype is located within a narrow interval downstream of the gene MSRB3, which is involved in human hearing. These SNPs are in strong genetic linkage with another set of variants that correlate with body mass within the gene HMGA2, which affects human height. In addition we find evidence that this region has been under selection during dog domestication, and identify a cluster of SNPs within MSRB3 that are highly differentiated between dogs and wolves. Conclusions: We characterise genetically linked variants that potentially influence ear type and body mass in dog breeds, both key traits that have been modified by selective breeding that may also be important for domestication. The finding that variants on long haplotypes have effects on more than one trait suggests that genetic linkage can be an important determinant of the phenotypic response to selection in domestic animals

    Multiple Genetic Loci Associated with Pug Dog Thoracolumbar Myelopathy

    No full text
    Pug dogs with thoracolumbar myelopathy (PDM) present with a specific clinical phenotype that includes progressive pelvic limb ataxia and paresis, commonly accompanied by incontinence. Vertebral column malformations and lesions, excessive scar tissue of the meninges, and central nervous system inflammation have been described. PDM has a late onset and affects more male than female dogs. The breed-specific presentation of the disorder suggests that genetic risk factors are involved in the disease development. To perform a genome-wide search for PDM-associated loci, we applied a Bayesian model adapted for mapping complex traits (BayesR) and a cross-population extended haplotype homozygosity test (XP-EHH) in 51 affected and 38 control pugs. Nineteen associated loci (harboring 67 genes in total, including 34 potential candidate genes) and three candidate regions under selection (with four genes within or next to the signal) were identified. The multiple candidate genes identified have implicated functions in bone homeostasis, fibrotic scar tissue, inflammatory responses, or the formation, regulation, and differentiation of cartilage, suggesting the potential relevance of these processes to the pathogenesis of PDM

    The dog as a genetic model for immunoglobulin A (IgA) deficiency: identification of several breeds with low serum IgA concentrations

    No full text
    Immunoglobulin A (IgA) serves as the basis of the secretory immune system by protecting the lining of mucosal sites from pathogens. In both humans and dogs, IgA deficiency (IgAD) is associated with recurrent infections of mucosal sites and immune-mediated diseases. Low concentrations of serum IgA have previously been reported to occur in a number of dog breeds but no generally accepted cut-off value has been established for canine IgAD. The current study represents the largest screening to date of IgA in dogs in terms of both number of dogs (n = 1267) and number of breeds studied (n = 22). Serum IgA concentrations were quantified by using capture ELISA and were found to vary widely between breeds. We also found IgA to be positively correlated with age (p < 0.0001). Apart from the two breeds previously reported as predisposed to low IgA (Shar-Pei and German shepherd), we identified six additional breeds in which ≄10% of all tested dogs had very low (<0.07 g/l) IgA concentrations (Hovawart, Norwegian elkhound, Nova Scotia duck tolling retriever, Bullterrier, Golden retriever and Labrador retriever). In addition, we discovered low IgA concentrations to be significantly associated with canine atopic dermatitis (CAD, p < 0.0001) and pancreatic acinar atrophy (PAA, p = 0.04) in German shepherds

    Utilizing the Dog Genome in the Search for Novel Candidate Genes Involved in Glioma Development-Genome Wide Association Mapping followed by Targeted Massive Parallel Sequencing Identifies a Strongly Associated Locus

    No full text
    Gliomas are the most common form of malignant primary brain tumors in humans and second most common in dogs, occurring with similar frequencies in both species. Dogs are valuable spontaneous models of human complex diseases including cancers and may provide insight into disease susceptibility and oncogenesis. Several brachycephalic breeds such as Boxer, Bulldog and Boston Terrier have an elevated risk of developing glioma, but others, including Pug and Pekingese, are not at higher risk. To identify glioma-associated genetic susceptibility factors, an across-breed genome-wide association study (GWAS) was performed on 39 dog glioma cases and 141 controls from 25 dog breeds, identifying a genome-wide significant locus on canine chromosome (CFA) 26 (p = 2.8 x 10(-8)). Targeted re-sequencing of the 3.4 Mb candidate region was performed, followed by genotyping of the 56 SNVs that best fit the association pattern between the re-sequenced cases and controls. We identified three candidate genes that were highly associated with glioma susceptibility: CAMKK2, P2RX7 and DENR. CAMKK2 showed reduced expression in both canine and human brain tumors, and a non-synonymous variant in P2RX7, previously demonstrated to have a 50% decrease in receptor function, was also associated with disease. Thus, one or more of these genes appear to affect glioma susceptibility

    Bayesian mixed model analysis uncovered 21 risk loci for chronic kidney disease in boxer dogs

    No full text
    Author summaryChronic kidney disease (CKD) is described as a set of heterogeneous disorders affecting kidney structure and function. CKD is common in dogs and has been diagnosed in nearly all breeds. In this study, we identified 21 genetic regions associated with CKD in a boxer population and investigated the relevant genes and putative regulatory variants in these regions. Studies of canine CKD may help to better understand the pathology of kidney disease in both dogs and humans, and shows an important potential for early identification of high-risk individuals. Chronic kidney disease (CKD) affects 10% of the human population, with only a small fraction genetically defined. CKD is also common in dogs and has been diagnosed in nearly all breeds, but its genetic basis remains unclear. Here, we performed a Bayesian mixed model genome-wide association analysis for canine CKD in a boxer population of 117 canine cases and 137 controls, and identified 21 genetic regions associated with the disease. At the top markers from each CKD region, the cases carried an average of 20.2 risk alleles, significantly higher than controls (15.6 risk alleles). An ANOVA test showed that the 21 CKD regions together explained 57% of CKD phenotypic variation in the population. Based on whole genome sequencing data of 20 boxers, we identified 5,206 variants in LD with the top 50 BayesR markers. Following comparative analysis with human regulatory data, 17 putative regulatory variants were identified and tested with electrophoretic mobility shift assays. In total four variants, three intronic variants from the MAGI2 and GALNT18 genes, and one variant in an intergenic region on chr28, showed alternative binding ability for the risk and protective alleles in kidney cell lines. Many genes from the 21 CKD regions, RELN, MAGI2, FGFR2 and others, have been implicated in human kidney development or disease. The results from this study provide new information that may enlighten the etiology of CKD in both dogs and humans
    corecore