230 research outputs found

    Model Dependence of Lateral Distribution Functions of High Energy Cosmic Ray Air Showers

    Get PDF
    The influence of high and low energy hadronic models on lateral distribution functions of cosmic ray air showers for AUGER energies is explored. A large variety of presently used high and low energy hadron interaction models are analysed and the resulting lateral distribution functions are compared. We show that the slope as well as the signal at 1000 m distance from the shower axis depend on both the high and low energy hadronic model used. The models are confronted with available hadron-nucleus data from accelerator experiments.Comment: 8 pages, 18 figures, accepted version, Journal of Astroparticle Physic

    Anorganisch-organische Hybridnanopartikel zur Anwendung in der Medizin

    Get PDF
    Fluoreszierende Zirkoniumphosphat-basierte anorganisch-organische Hybridnanopartikel verkörpern ein neuartiges Materialkonzept, das in Bezug auf die Einfachheit der Synthese und der BiokompatibilitÀt eine Alternative zu Halbleiterquantenpunkten darstellt. Dieses Konzept eignet sich ebenso zur Freisetzung von pharmazeutischen Wirkstoffen aus Nanopartikeln, welche sich durch ihren hohen Wirkstoffgehalt auszeichnen

    ATXN2-CAG42 sequesters PABPC1 into insolubility and induces FBXW8 in cerebellum of old ataxic knock-in mice

    Get PDF
    Spinocerebellar Ataxia Type 2 (SCA2) is caused by expansion of a polyglutamine encoding triplet repeat in the human ATXN2 gene beyond (CAG)31. This is thought to mediate toxic gain-of-function by protein aggregation and to affect RNA processing, resulting in degenerative processes affecting preferentially cerebellar neurons. As a faithful animal model, we generated a knock-in mouse replacing the single CAG of murine Atxn2 with CAG42, a frequent patient genotype. This expansion size was inherited stably. The mice showed phenotypes with reduced weight and later motor incoordination. Although brain Atxn2 mRNA became elevated, soluble ATXN2 protein levels diminished over time, which might explain partial loss-of-function effects. Deficits in soluble ATXN2 protein correlated with the appearance of insoluble ATXN2, a progressive feature in cerebellum possibly reflecting toxic gains-of-function. Since in vitro ATXN2 overexpression was known to reduce levels of its protein interactor PABPC1, we studied expansion effects on PABPC1. In cortex, PABPC1 transcript and soluble and insoluble protein levels were increased. In the more vulnerable cerebellum, the progressive insolubility of PABPC1 was accompanied by decreased soluble protein levels, with PABPC1 mRNA showing no compensatory increase. The sequestration of PABPC1 into insolubility by ATXN2 function gains was validated in human cell culture. To understand consequences on mRNA processing, transcriptome profiles at medium and old age in three different tissues were studied and demonstrated a selective induction of Fbxw8 in the old cerebellum. Fbxw8 is encoded next to the Atxn2 locus and was shown in vitro to decrease the level of expanded insoluble ATXN2 protein. In conclusion, our data support the concept that expanded ATXN2 undergoes progressive insolubility and affects PABPC1 by a toxic gain-of-function mechanism with tissuespecific effects, which may be partially alleviated by the induction of FBXW8

    Intensification of Kinetic Studies for a Multi-step Reaction in a Milli-structured Plate Reactor by using Model-based Design of Experiments

    Get PDF
    In the context of process intensification, milli-structured plate reactors provide significant advantages over conventional reactors in terms of heat and mass transfer as well as process safety. The ARTÂź plate reactor PR37 of Ehrfeld Mikrotechnik GmbH offers excellent heat transfer, narrow residence time distributions and high mixing efficiency, while simultaneously allowing an effective scale-up to industrial applications due to its modular set up. This does not only enable the realization of novel process windows exceeding the limits of conventional reactors, but also provides optimal prerequisites for kinetic modelling due to the well-defined process conditions, providing key information regarding process design and optimization. The integration of the ART PR37 with Model-based Design of Experiments (MBDoE) allows for an intensification of kinetic studies, combining the well-defined operating conditions with a rapid and targeted identification of kinetic models. In the current study this combination is applied to successfully identify the kinetics of a multi-step aromatic nucleophilic substitution reaction with low experimental effort, saving time and resources compared to conventional factorial Design of Experiments

    Stardust in STARDUST - the C, N, and O Isotopic Compositions of Wild 2 Cometary Matter in Al foil Impacts

    Get PDF
    In January 2006, the STARDUST mission successfully returned dust samples from the tail of comet 81P/Wild 2 in two principal collection media, low density silica aerogel and Al foil. While hypervelocity impacts at 6.1 km/s, the encounter velocity of STARDUST, into Al foils are generally highly disruptive for natural, silicate-dominated impactors, previous studies have shown that many craters retain sufficient residue to allow a determination of the elemental and isotopic compositions of the original projectile. We have used the NanoSIMS to perform C, N, and O isotope imaging measurements on four large (59-370 microns diameter) and on 47 small (0.32-1.9 microns diameter) Al foil impact craters as part of the STARDUST Preliminary Examination. Most analyzed residues in and around these craters are isotopically normal (solar) in their C, N, and O isotopic compositions. However, the debris in one large crater shows an average 15N enrichment of approx. 450 %, which is similar to the bulk composition of some isotopically primitive interplanetary dust particles. A 250 nm grain in another large crater has an O-17 enrichment with approx. 2.65 times the solar O-17/O-16 ratio. Such an O isotopic composition is typical for circumstellar oxide or silicate grains from red giant or asymptotic giant branch stars. The discovery of this circumstellar grain clearly establishes that there is authentic stardust in the cometary samples returned by the STARDUST mission. However, the low apparent abundance of circumstellar grains in Wild 2 samples and the preponderance of isotopically normal material indicates that the cometary matter is a diverse assemblage of presolar and solar system materials

    “Dogged” Search of Fresh Nakhla Surfaces Reveals New Alteration Textures

    Get PDF
    Special Issue: 74th Annual Meeting of the Meteoritical Society, August 8-12, 2011, London, U.K.International audienceCarbonaceous chondrites are considered as amongst the most primitive Solar System samples available. One of their primitive characteristics is their enrichment in volatile elements.This includes hydrogen, which is present in hydrated and hydroxylated minerals. More precisely, the mineralogy is expected to be dominated by phyllosilicates in the case of CM chondrites, and by Montmorillonite type clays in the case of CI. Here, in order to characterize and quantify the abundance of lowtemperature minerals in carbonaceous chondrites, we performed thermogravimetric analysis of matrix fragments of Tagish Lake, Murchison and Orgueil
    • 

    corecore