243 research outputs found

    Momentum signatures for Schwinger pair production in short laser pulses with a sub-cycle structure

    Full text link
    We investigate electron-positron pair production from vacuum for short laser pulses with sub-cycle structure, in the nonperturbative regime (Schwinger pair production). We use the non-equilibrium quantum kinetic approach, and show that the momentum spectrum of the created electron-positron pairs is extremely sensitive to the sub-cycle dynamics -- depending on the laser frequency ω\omega, the pulse length τ\tau, and the carrier phase ϕ\phi -- and shows several distinctive new signatures. This observation could help not only in the design of laser pulses to optimize the experimental signature of Schwinger pair production, but also ultimately lead to new probes of light pulses at extremely short time scales.Comment: 4 pages, 5 figures. Revised version: Minor changes and typos corrected. PRL Versio

    RNA sequencing reveals two major classes of gene expression levels in metazoan cells

    Get PDF
    The expression level of a gene is often used as a proxy for determining whether the protein or RNA product is functional in a cell or tissue. Therefore, it is of fundamental importance to understand the global distribution of gene expression levels, and to be able to interpret it mechanistically and functionally. Here we use RNA sequencing of mouse Th2 cells, coupled with a range of other techniques, to show that all genes can be separated, based on their expression abundance, into two distinct groups: one group comprising of lowly expressed and putatively non-functional mRNAs, and the other of highly expressed mRNAs with active chromatin marks at their promoters

    Experience recruits MSK1 to expand the dynamic range of synapses and enhance cognition

    Get PDF
    Experience powerfully influences neuronal function and cognitive performance, but the cellular and molecular events underlying the experience-dependent enhancement of mental ability haveremained elusive. In particular, the mechanisms that couple the external environment to the genomic changes underpinning this improvement are unknown. To address this we have used male mice harbouring an inactivating mutation of mitogen- and stress-activated protein kinase 1 (MSK1), a BDNF-activated enzyme downstream of the MAPK pathway. We show that MSK1 is required for the full extent of experience-induced improvement of spatial memory, for the expansion of the dynamic range of synapses, exemplified by the enhancement of hippocampal LTP and LTD, and for the regulation of the majority of genes influenced by enrichment. In addition, and unexpectedly, we show that experience is associated with an MSK1-dependent downregulation of key MAPK and plasticity related genes, notably of EGR1/Zif268 and Arc/Arg3.1, suggesting the establishment of a novel genomic landscape adapted to experience. By coupling experience to homeostatic changes in gene expression MSK1, represents a prime mechanism through which the external environment has an enduring influence on gene expression, synaptic function and cognition

    Localized Excitons and Breaking of Chemical Bonds at III-V (110) Surfaces

    Full text link
    Electron-hole excitations in the surface bands of GaAs(110) are analyzed using constrained density-functional theory calculations. The results show that Frenkel-type autolocalized excitons are formed. The excitons induce a local surface unrelaxation which results in a strong exciton-exciton attraction and makes complexes of two or three electron-hole pairs more favorable than separate excitons. In such microscopic exciton "droplets" the electron density is mainly concentrated in the dangling orbital of a surface Ga atom whereas the holes are distributed over the bonds of this atom to its As neighbors thus weakening the bonding to the substrate. This finding suggests the microscopic mechanism of a laser-induced emission of neutral Ga atoms from GaAs and GaP (110) surfaces.Comment: submitted to PRL, 10 pages, 4 figures available upon request from: [email protected]

    Simulations of “tunnelling of the 3rd kind”

    Get PDF
    We consider the phenomenon of ``tunnelling of the 3rd kind" \cite{third}, whereby a magnetic field may traverse a classically impenetrable barrier by pair creation of unimpeded quantum fermions. These propagate through the barrier and generate a magnetic field on the other side. We study this numerically using quantum fermions coupled to a classical Higgs-gauge system, where we set up a magnetic field outside a box shielded by two superconducting barriers. We examine the magnitude of the internal magnetic field, and find agreement with existing perturbative results within a factor of two

    The Regulatory T Cell Lineage Factor Foxp3 Regulates Gene Expression through Several Distinct Mechanisms Mostly Independent of Direct DNA Binding.

    Get PDF
    The lineage factor Foxp3 is essential for the development and maintenance of regulatory T cells, but little is known about the mechanisms involved. Here, we demonstrate that an N-terminal proline-rich interaction region is crucial for Foxp3's function. Subdomains within this key region link Foxp3 to several independent mechanisms of transcriptional regulation. Our study suggests that Foxp3, even in the absence of its DNA-binding forkhead domain, acts as a bridge between DNA-binding interaction partners and proteins with effector function permitting it to regulate a large number of genes. We show that, in one such mechanism, Foxp3 recruits class I histone deacetylases to the promoters of target genes, counteracting activation-induced histone acetylation and thereby suppressing their expression

    Effective Electromagnetic Lagrangian at Finite Temperature and Density in the Electroweak Model

    Full text link
    Using the exact propagators in a constant magnetic field, the effective electromagnetic Lagrangian at finite temperature and density is calculated to all orders in the field strength B within the framework of the complete electroweak model, in the weak coupling limit. The partition function and free energy are obtained explicitly and the finite temperature effective coupling is derived in closed form. Some implications of this result, potentially interesting to astrophysics and cosmology, are discussed.Comment: 14 pages, Revtex
    corecore