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Abstract 

 

The expression level of a gene is often used as a proxy for determining whether the 

protein or RNA product is functional in a cell or tissue. Therefore, it is of fundamental 

importance to understand the global distribution of gene expression levels, and to be 

able to interpret it mechanistically and functionally. Here we use RNA sequencing of 

mouse Th2 cells, coupled with a range of other techniques, to show that all genes can 

be separated, based on their expression abundance, into two distinct groups: one 

group comprising of lowly expressed and putatively non-functional mRNAs, and the 

other of highly expressed mRNAs with active chromatin marks at their promoters.  
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Introduction 

 

Expression level is frequently used as a way of characterizing gene function, by 

Northern blotting, PCR, microarrays, and, more recently, RNA-sequencing (Wang et 

al, 2009a) (RNA-seq). Therefore, it is a central issue in molecular biology to know 

how many transcripts are expressed in a cell at what levels. This question was studied 

very early in the history of molecular biology using methods such as reassociation 

kinetics (Hastie & Bishop, 1976), which indicated the existence of distinct abundance 

classes, and recently, we pointed out that separate peaks are visible in the abundance 

distributions of a number of microarray data sets (Hebenstreit & Teichmann, 2011). 

At the same time, microarrays or RNA-seq data have been described as displaying 

broad, roughly lognormal distributions of expression levels with no clear separation 

into discrete classes (Hoyle et al, 2002; Lu & King, 2009; Ramskold et al, 2009). 

There are several reasons for this: many samples are heterogeneous in terms of cell 

type (Hebenstreit & Teichmann, 2011) or are based on a previous generation of less 

sensitive microarrays, many are from unicellular organisms rather than animals, and 

finally, data processing and plotting methods can obscure the presence of distinct 

abundance classes. Here, we provide experimental and computational support for two 

overlapping major mRNA abundance classes. 

 

Results and Discussion 

 

We based our analysis on murine Th2 cells (Zhu et al, 2010) as these cells can 

be obtained in large quantities ex vivo and can be prepared as a pure and 

homogeneous cell population. Furthermore, there is a well characterized set of genes 

whose proteins are known to be expressed and functional in Th2 cells, as well as a set 

of genes known to be not expressed in these cells (Table S1 lists the genes we used in 

our study, Figure S1 shows expression of two marker proteins in the cells).  

We generated Th2 RNA-seq data for two biological replicates (Table S2 gives 

the number of reads and mappings we obtained) and calculated gene expression levels 

using the standard measure of Reads Per Kilobase per Million (RPKM) (Mortazavi et 

al, 2008). The expression levels of the biological replicates are highly correlated (r2 = 

0.94, Figure S2). We then calculated the mean RPKMs of the two samples for all 

genes and log2 transformed these values.  
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Displaying the distribution of all gene expression levels as a kernel density 

estimate (KDE) reveals an interesting structure: the majority of genes follow a normal 

distribution which is centered at a value of ~4 log2 RPKM (~16 RPKM), while the 

remaining genes form a shoulder to the left of this main distribution (Figure 1A, solid 

line). This was conserved under different KDE bandwidths (Figure S3, left panel) or 

different histogram representations (Figure S3, right panel). As genes with zero reads 

cannot be included on the log scale, we prepared an alternative version of Figure 1A 

where we assigned low RPKM values to these. This helps to illustrate the fraction of 

zero read genes (Figure S4). As a comparison, we studied microarray data for the 

same cell type from a recent publication (Wei et al, 2009). The correlation between 

the microarray and the RNA-seq data was very good and highly statistically 

significant (Pearson r2 = 0.83, Spearman ρ = 0.84, Figure S5). Surprisingly, 

displaying the distribution of microarray expression levels results in a clearly bimodal 

distribution (Figure 1B). Again, the appearance of the distribution was insensitive to 

the KDE bandwidth choice or histogram bin size (Figure S6). The bimodality was 

conserved when alternative normalization and processing schemes were used, 

independent of KDE bandwidths (Figure S7). 

Visual inspection of both microarray and RNA-seq data thus reveals two 

overlapping main components of the distribution of gene expression levels. 

Quantifying this by curve fitting confirms a good fit to two distributions: the 

goodness-of-fit (measured by Akaike Information criterion, AIC (Akaike, 1974), 

Bayesian Information Criterion, BIC (Schwarz, 1978) or Likelihood ratio tests 

(Casella & Berger, 2001)) shows strong increases for both microarray and RNA-seq 

data when two-component models are fit by expectation-maximization (compared to 

single- or more-component models) (Figure S8). We designate the two groups of 

genes as the lowly expressed (LE) and highly expressed (HE) genes (Figure 1C), 

because we will present evidence below that the LE genes are expressed rather than 

simply being experimental background. Our findings are not limited to Th2 cells and 

hold for virtually all recently published metazoan RNA-seq datasets (e.g. (Marioni et 

al, 2008; Mortazavi et al, 2008; Mudge et al, 2008; Wang et al, 2008), Figure S9 and 

(Cloonan et al, 2008), Figure S10A, B) and all microarray data sets (e.g. (Cui et al, 

2009), GNF Atlas 3 (Lattin et al, 2008), (Chintapalli et al, 2007), Figure S11) we have 

studied. The existence of further, minor groups of genes cannot be excluded, but is 
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not clear at this point due to the diverse curve-fitting results for the different datasets 

if higher-order (more than two components) models are considered.  

The difference between the microarray and RNA-seq distributions is explained 

by the fact that the microarrays yield a signal for all genes, part of which is due to 

cross-hybridization of oligo-nucleotide probes if the gene is not strongly expressed. 

RNA-seq on the other hand yields a signal for a gene only if at least one sequencing 

read is found. The accuracy of RNA-seq is biased towards longer and more highly 

expressed genes, e.g. 5 % of all genes account for 50 % of all reads in our data as well 

as in other datasets (Bullard et al, 2010; Mortazavi et al, 2008; Oshlack & Wakefield, 

2009).  

To explore how this accuracy bias affects the shape of the LE distribution, we 

studied the RNA-seq detection limit. We first plotted the number of genes with zero 

reads as a function of the total number of reads (taking subsets of the total reads). The 

number of genes without reads decreases slowly, with no change in slope and hence 

no indication of reaching a plateau. Even at a total of 25 million reads, ~30% of all 

genes are undetected (Figure 2A). We further estimated the numbers of genes 

remaining undetected at each expression level by assuming Poisson-distributed read 

numbers (Jiang & Wong, 2009) and determining the expected frequency of zeroes. 

This confirms the sensitivity drop at the lower end of the LE peak (Figure 2B). 

Extrapolating the numbers of expressed genes including the undetected ones reveals 

an emerging LE peak (Figure 2B). Thus the smaller portion of LE genes in the RNA-

seq data compared to the microarray data is at least partially due to the RNA-seq 

detection limit, although this only becomes a problem for genes at less than ~ -3 to -4 

log2 RPKM. It should be noted that these low expression levels correspond to an 

absence of transcripts in the majority of cells, as we demonstrate further below. 

 To further confirm that the LE genes correspond to low expression and not 

experimental noise, we performed realtime PCRs. We tested amplification by exon 

spanning primers of a set of genes that are known to be expressed or not expressed in 

Th2 cells, plus five random genes that we detected between -3.7 and -5 log2 RPKM in 

the RNA-seq experiment (Table S1). We were able to successfully PCR-amplify all 

genes with high specificity. The expressed genes map to the HE peaks, while the 

unexpressed genes map to the LE peaks, if we align the PCR results with the 

microarray/RNA-seq data (Figure 2C).  
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We also tested the extent to which genomic DNA can be detected in our 

polyA-purified mRNA sample, as proposed by Ramskold et al (Ramskold et al, 2009) 

as a means of quantifying experimental background. We randomly selected intergenic 

fragments with the same length distribution as genes, 10 kb away from genes. The 

resulting RPKM distribution contains a high number of zero-RPKM fragments (79 %) 

while the majority of non-zero fragments peaks slightly left of the LE shoulder 

(Figure 1A). The 90 % quantile of this intergenic background distribution is found at -

4.97 log2 RPKM, which means that we can be quite confident that genes with an 

RPKM value above this level are truly expressed rather than representing 

experimental background noise (Figure 1A). We cannot rule out that detection of 

intergenic DNA corresponds to transcription as well, which would make the case for 

transcription of LE genes even stronger.  

Analysis of the strand-specific RNA-sequencing data of Cloonan et al 

(Cloonan et al, 2008) yields similar conclusions. The experimental protocol selects for 

reads antisense to genes. In the distribution of ‘sense’ reads (i.e. the noise, reads that 

don’t map to genes), more than 50 % of genic regions have zero reads. This noise 

distribution is unimodal and shifted by ~ 2 log2 RPKM with respect to the LE 

distribution (Figure S10A). 

We next determined the distribution of RPKM within introns, again using 

fragments with the same length distribution as transcripts. (Please note that our 

intronic read densities are not enriched at 5’ or 3’ ends of the intronic regions (Figure 

S12).) The resulting intronic distribution is significantly higher than the intergenic 

background (two-sided Wilcoxon rank sum test, p < 2.2 x 10-16) and peaks at roughly 

-1 log2 RPKM (Figure 1A). Introns thus have one- to two orders of magnitude lower 

read density than exons. This suggests that we are detecting incompletely processed 

transcripts at a low but significant and uniform level across all the whole range of 

transcript abundances.  

Since introns are one- to two orders of magnitude longer than exons, introns 

should be detectable with roughly the same accuracy as exons, if the full-length set of 

introns of a gene is used. If we plot the RPKM in exonic regions versus the RPKM in 

intronic regions for each gene, there is significant correlation (r2 = 0.86, p < 2.2 x 10-

16) across the whole spectrum of expression levels. Calculating the correlation for 

lowly and highly expressed genes separately yields only slightly lower correlations 

among LE genes compared to HE genes, and both correlations are highly significant 
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(Figure 2D). This provides evidence that confirms that LE genes are transcribed rather 

than experimental background: there would not be such a high correlation between 

introns and exons, particularly in the low abundance region, if their detection were 

due to noise. 

 We next studied gene expression using a single cell approach by performing 

single molecule RNA-FISH (Raj et al, 2008) for five genes that are expressed at 

different levels according to the literature and our RNA-seq data. The distributions of 

mRNA numbers per cell were very broad for expressed genes (e.g. Gata3), while low 

mRNA numbers from ‘not-expressed’ genes (e.g. Tbx21) were still detected (Figure 

3A). All genes had Fano factors (σ2/µ) larger than 4, indicating that they had extra-

Poisson variation (a Poisson random variable would have σ2/µ = 1) and therefore 

burst-like transcription (Raj & van Oudenaarden, 2009) (Table S3). Importantly, cells 

expressing Tbx21 were not anti-correlated with cells expressing Gata3 (Figure 3B), 

meaning that we do not have a sub-population of Th1 cells in our Th2 cell 

populations. This further demonstrates that LE expression is not due to a 

contaminating cell type, as the same cells express groups of genes at HE and others at 

LE levels. 

Since the RPKM as measured by RNA-seq should be proportional to the mean 

mRNA numbers per cell, we can use the RNA-FISH results to estimate how our 

RPKM values translate into mRNA numbers. We find that one RPKM corresponds to 

an average of roughly one transcript per cell in our Th2 data set (Figure 3C). Please 

note that the value of one RPKM/one transcript on average per cell serves as an 

estimate only as it is based on a limited number of data points. 
It should be noted that the two groups of genes at high versus low expression 

levels cannot result from a mixture of different cell types. Mixing of different cell 

types leads to gene expression levels for each gene that are an average across cell 

types. Hence such distributions will become more unimodal, not less so (following 

the central limit theorem).  

 To study the nature of the LE and HE groups in more detail, we prepared Th2 

ChIP-seq data for the activating H3K9/14 acetylation histone modification (Roh et al, 

2005; Wang et al, 2009b) (H3K9/14ac) and one IgG control. We calculated the 

histone modification level at each gene by identifying a globally enriched window 

around the transcription start sites of genes, and using reads in this window as a 



 8 

measure of each gene’s modification level, normalized by the total reads (giving the 

normalized locus specific chromatin state, NLCS, as used in (Hebenstreit et al, 

2011)). Thus we were able to plot histone modification levels of each gene against 

expression levels from the RNA-seq or microarray data using a heatmap 

representation (Figure 3D, RNA-seq, Figure 3E, microarrays). Figure S13 is an 

alternative version of this figure, where we randomly assigned low RPKM values to 

the zero-read genes. 

This strikingly confirms the two groups of gene expression levels, as there is a 

very good agreement between LE genes and absence of histone marks on one hand, 

and HE genes and presence of H3K9/14ac marks on the other hand (Figure 3D-E).  

This is seen for both the microarrays as well as the RNA-seq data. This extends 

previous findings of the relationship between H3K9/14ac and transcriptional 

activation by revealing an on/off-type of correlation between this histone mark and 

the LE/HE groups of genes. It should be noted that there is a very weak correlation 

within the LE and HE groups. The strongest correlation is within the RNA-seq HE 

group with a correlation coefficient r2 = 0.29 in log space and r2 = 0.097 on linear 

space. 

Since the LE group of genes is still expressed at low levels and contains at 

least five genes that are characterized as not expressed and non-functional in Th2 

cells, it seems likely that the HE group of genes represents the active and functional 

transcriptome of cells. This is supported by SILAC proteomics data (Graumann et al, 

2008) which is available for the embryonic stem cell data we presented earlier (Figure 

S10) and which indicates protein expression of HE genes only (Figure S10C). The 

tight correlation recently observed between RNA and protein levels in three 

mammalian cell lines also supports this (Lundberg et al, 2010). 

Gene ontology (GO) analysis of LE and HE genes in the Th2 cells supports 

the notion that HE comprises the functional transcriptome, as many T cell specific 

processes (e.g. GO:0050863, GO:0045582, GO:0042110) and housekeeping 

processes are enriched (Table S4). On the other hand, many GO terms referring to 

differentiation of other celltypes (e.g. ear development GO:0043583, neuron fate 

commitment GO:0048663) are enriched among the LE set of genes (Table S5). 

In conclusion, our data shows that two large groups of genes can be 

discriminated based on the distribution of expression levels. RNA-FISH indicates that 

the boundary between the groups is found at an expression level of roughly one 
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transcript per cell. In addition, H3K9/14ac marks are associated with the promoters of 

highly expressed genes only (Figure 3F). It thus seems likely that the LE/HE groups 

reflect different transcription kinetics depending on the chromatin state or vice versa. 

The LE group is likely to correspond to ‘leaky’ expression, producing non-functional 

transcripts. The majority of LE genes are expressed at less than one copy per cell on 

average, and it would be interesting to know whether such stochastic expression has 

any function, e.g. in cell differentiation, or any deleterious effects. There may be a 

trade-off between the cost of repressing expression entirely and unwanted 

consequences of stochastic expression. 

Regulation of gene expression is mostly mediated by transcription factor 

binding events at promoters and enhancers, e.g. (Heintzman et al, 2009). Often, 

differential regulation induces only small changes in expression levels, probably 

serving to fine-tune expression and shifting genes within the HE group. Our data 

suggests that in addition to this, there is a key decision about whether a gene becomes 

“switched on” and expressed which coincides with a boost in both transcription and 

H3K9/14ac histone modification.  
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Figure legends 

 

Figure 1. Distribution of gene expression levels. (A) Kernel density estimates of 

RPKM distributions of RNA-seq data within exons, introns and intergenic regions as 

indicated. The fragments used to estimate intron and intergenic RPKM were based on 

randomizations using the same length distribution as the exonic parts of genes. The 

90% quantile of the intergenic distribution is indicated. (B) Kernel density estimate of 

expression level distribution of microarray data (Wei et al, 2009). (C) Expectation 

maximization based curve fitting of RNA-seq data of (A).  
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Figure 2. Sensitivity of RNA-seq. (A) Detection of genes in dependency of the total 

read numbers on linear scale (left) and log2 scale (right). Random subsets of the total 

reads for the two RNA-seq replicates were taken and the number of genes with zero 

reads were plotted versus the total read numbers used. The figure represents an 

average of five independent subsets for each data point. (B) Prediction of genes 

remaining undetected due to Poisson statistics underlying RNA-seq. The theoretically 

expected fraction of genes remaining undetected (red, y-axis on the right side of the 

figure in red) was determined for each expression level and was used to infer from the 

binned (small ticks on top indicate the bins) actual expression data (black) the 

expressed genes including the undetected ones (blue). In addition to the RPKM scale, 

the reads per kilobase (RPK) scale (without normalization to the total number of 

mapped reads) is shown (on top), which was used for the calculation of the (integer-) 

Poisson statistic and which, in contrast to the RPKM scale, depends on the total 

number of sequencing reads. (C) RT-PCR for the genes listed in Table S1. The RNA-

seq expression levels of the genes are plotted versus the negative threshold cycles (Ct) 

of the PCRs. The plot is overlaid (with the same x-axis scaling) upon the kernel 

density estimate of the RNA-seq expression level distribution (black line) to show the 

positions of the genes in the total expression distribution. Genes either in the LE peak 

of the RNA-seq distribution or which have been previously characterized as not 

expressed in Th2 cells are shown in orange. Genes known to be expressed are shown 

in purple. Error bars indicate standard error of mean from three independent 

biological replicates. Please refer to Tables S1 and S3 for details of genes and PCR 

primers. (D) Correlation of RPKM within exons and introns from RNA-seq data of 

Figure 1A. Correlation and significance of correlation were calculated for the whole 

distribution (black) or for LE and HE genes separately (orange and purple, 

respectively). Division into LE and HE was performed along a line perpendicular to a 

fitted trendline (black), centered at Exon RPKM = 1. 

 

Figure 3. (A) Distribution of mRNA numbers among single cells. Histograms for 

Gata3 and Tbx21 (with an inset histogram starting from 1 instead of 0 to better 

illustrate higher expressions) and a sample fluorescence microscopy image are shown. 

Tbx21 transcripts are marked with white arrows to ease identification. (B) Correlation 

between Gata3 and Tbx21 expression. Correlation coefficient and significance are 

inset. (C) Plot of mean mRNA numbers per cell versus RNA-seq RPKM of five 
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genes. Error bars indicate SEM from two RNA-seq biological replicates. (D-E) 2D 

kernel density estimates of gene expression level vs. ChIP-seq signal for each gene 

for RNA-seq (D) and microarray (E) data. Divisions between background and signal 

for the ChIP-seq component were determined by curve fitting with the software 

EpiChIP (Hebenstreit et al, 2011) and are indicated. Divisions between LE and HE 

groups of genes are indicated. (F) Scheme summarizing the results. 
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