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Abstract: We consider the phenomenon of “tunnelling of the 3rd kind” [1], whereby a

magnetic field may traverse a classically impenetrable barrier by pair creation of unim-

peded quantum fermions. These propagate through the barrier and generate a magnetic

field on the other side. We study this numerically using quantum fermions coupled to a

classical Higgs-gauge system, where we set up a magnetic field outside a box shielded by

two superconducting barriers. We examine the magnitude of the internal magnetic field,

and find agreement with existing perturbative results within a factor of two.
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1 Introduction

Classically, magnetic fields are unable to propagate through a variety of barriers, mirrors,

walls, and thick superconductors. At the quantum level, however, the possibility arises

that particles may be pair-created on one side of the barrier and propagate through to the

other side. Once there, a magnetic field may be (re-)created by the particle pair, leading

to the phenomenon dubbed “tunnelling of the 3rd kind” [1].

The assumption is that the pair-created particle species does not see the barrier, and

that excitations may propagate freely the distance required before in effect annihilating

again.

A careful demonstration of the effect was made in [1], with the expected magnetic

field beyond the barrier computed in a number of relevant limits (see below). Further

applications have since been investigated [2, 3].
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In this work, we investigate the phenomenon non-perturbatively and numerically on

a lattice, simulating quantum fermions coupled to electromagnetism (a U(1) gauge field).

The gauge field is in turn coupled to a classical scalar field, which may be engineered

to have a large, localized field expectation value, thereby inflicting a large mass on the

photons. The scalar field then effectively acts as a barrier, where magnetic fields have a

finite penetration depth. But since the fermions are not coupled to the scalar field, they

are oblivious (at least to leading order) to its existence.

We will consider a very specific setup, where two parallel 2-dimensional walls split 3

dimensional space into one “inside” region, the “box”, and two “outside” regions, one on

either side. We may then effectively reduce the simulations to be one-dimensional, invariant

under translations in the directions transverse to the walls. Through a number of technical

developments, we can engineer a magnetic field initially outside the box, and by varying

the strength and thickness of the barriers, investigate whether the magnetic field inside the

box is affected by the presence of quantum fermions in the system.

A secondary goal of this work, is to demonstrate that methods of classical/quantum

field theory including fermions in real-time [4, 5], may be used to model real-life experiments

numerically (see also [12]). Lattice fermions have been implemented in real time before, but

the overwhelming approach has been to consider imaginary time, usually with the view of

computing statistical expectation values averaged over many random configurations, in an

infinite system (periodic boundary conditions, taking the infinite volume limit). Here, we

instead consider a finite system, and address many of the technical difficulties associated

with boundary conditions, stability and real-time sources, but using the language and

formalism of relativistic quantum fields on a cubic lattice.

Quantum real-time fermions are numerically very expensive, since they involve solving

for 2N distinct mode functions, with N the lattice size. A “cheaper” version, taking

advantage of a statistical averaging procedure rather than the complete set of mode function

was introduced in [13] and applied to a number of phenomena [6–11]. For our purposes here,

this approach does not reduce the numerical effort sufficiently at the precision required,

and we revert to the “all-modes” implementation of [4, 5].

In section 2, we introduce our model and definitions, and the field equations for classical

and quantum fields. In section 3, we specialise to our setup of choice, describing boundary

conditions, the implementation of the box and our observables. In section 3.2, we describe

the phenomenon of tunnelling of the 3rd kind, and provide some theoretical background

based on [1], adapted to our setup. Section 4 contains our numerical tests, comparing

the classical and classical plus quantum system in search of a tunnelling signal. Section 5

contains our conclusions. The details of the lattice implementation may be found in the

appendices A–C.

2 Model

We consider a model including a complex scalar φ (the Higgs field), and U(1) gauge field

Aµ (electromagnetism) and a charged fermion field Ψ. Writing the scalar in polar form

φ = ρ exp(iθ) and keeping only the phase as dynamical, we have the action (signature

– 2 –
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S =

∫
c d4X

[
− 1

4µ0
Fµν(X)Fµν(X)− 1

2
ρ2(X)Dµθ(X)Dµθ(X)− jµ(X)Aµ(X)

−Ψ̄(X)γµDµΨ(X)− mc

~
Ψ̄(X)Ψ(X)

]
. (2.1)

As usual, Ψ̄ ≡ iΨ†γ0 and we have included an external source jµ(X). At this stage, we

keep the fundamental constants c, ~, µ0 explicit. The covariant derivatives are then

Dµθ = ∂µθ −
e

~
Aµ, DµΨ =

(
∂µ − i

q

~
Aµ

)
Ψ, (2.2)

where the gauge-Higgs coupling is determined by the usual electron charge e, but where the

fermion is allowed a general charge q. We employ the Weyl representation of the fermion

algebra throughout.

Variation of the action and imposing the temporal gauge yields the equations of motion:

1

µ0c
Σi∂iEi(X) +

e

~
ρ2(X)D0θ(X) + i

q

~
Ψ̄(X)γ0Ψ(X)− j0(X) = 0, (2.3)

1

µ0c
∂0Ei(X) +

1

µ0
Σj∂jFji(X) +

e

~
ρ2(X)Diθ(X) + i

q

~
Ψ̄(X)γiΨ(X)− ji(X) = 0, (2.4)(
γµDµ +

mc

~

)
Ψ(X) = 0, (2.5)

∂µ
(
ρ2(X)Dµθ(X)

)
= 0, (2.6)

with Ei(X) = −c∂0Ai(X). The first line is Gauss’ Law which is satisfied at all times,

if enforced initially. The subsequent three equations determine the time evolution of the

gauge, scalar and fermion fields.

At this stage, promoting Ψ to a quantum-field operator and forming the expectation

value of the resultant operator bilinears i q~Ψ̄(X)γ0Ψ(X) and i q~Ψ̄(X)γiΨ(X), yields a set

of semi-quantized equations of motion in a way similar to [4, 5]. By this we mean that

the linear fermion equation is to be solved as an operator equation (see below), and that

the classical gauge and scalar equations are solved non-linearly with the resulting fermion

bilinears inserted, computed with the fermion solution.

We implement these evolution equations on a finite volume, discretized lattice, where

we deal with the fermion doubling phenomenon by introducing a Wilson term (see for

instance [14]).

2.1 Quantum fermions

We expand the fermion operator field on Gaussian modes1 ψ
(U)
k,s and ψ

(V )
k,s :

Ψ̂(X) =
√
~c
∑
s

∫
d3k

(2π)3

(
b̂k,sψ

(U)
k,s (X) + d̂†k,sψ

(V )
k,s (X)

)
, (2.7)

1Note that since the fermion equation is linear, fermions are always Gaussian, also in an interacting

theory, and can be expanded in mode functions.

– 3 –
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Figure 1. The setup of the system with barriers (red) and boundaries (green). Here, η = 1.

During the time-evolution, each mode independently satisfies the fermion equation of mo-

tion (2.5). For each value of momentum k, the spin variable s takes two values for each of

the two modes U and V .

The {b̂†k,s} {b̂k,s} are the creation and annihilation operators respectively for the

fermionic particle and {d̂†k,s} {d̂k,s} are for the anti-particle. There is one for each mode

function (value of k, s, U/V ), they are time-independent and satisfy:

{b̂k,s, d̂l,r} = {b̂†k,s, d̂l,r} = 0 {b̂k,s, b̂†l,r} = {d̂k,s, d̂
†
l,r} = (2π)3 δ3(k− l)δsr. (2.8)

This defines the initial state of the fermions to be the free-field vacuum. The (lattice)

implementation of the quantum fermions closely follow [4], and details will given in the

appendix B.

3 Setup of the system

We consider a 3-dimensional space, where along the z-axis two parallel 2-dimensional su-

perconductors are placed, extending in the x-y direction. The z-direction is taken to be

the finite interval [0, L], and the two superconductors are placed symmetrically around

z = L/2. We choose explicitly

ρ2(X)=ρ2(z) ≡ η2

[
2−tanh

(
z+S/2+d/2−L/2

δ

)
tanh

(
z+S/2−d/2−L/2

δ

)
(3.1)

− tanh

(
z − S/2 + d/2− L/2

δ

)
tanh

(
z − S/2− d/2− L/2

δ

)]
.

This amounts to two barriers of amplitude ρ2 = 2η2 at positions L/2 ± S/2, of width d

with δ parametrising how abruptly the scalar field drops from its maximum value to zero,

– 4 –
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figure 1. In essence, we have created a box of width S extending indefinitely in the x and

y directions. This implies that the system may essentially reduce to a one-dimensional

problem in the z-direction. We impose periodic boundary conditions in x and y and

Neumann boundary conditions in z.

The current jµ is introduced to create and sustain an electromagnetic field on the

outside of the box. We will choose it to only have a component in the x-direction

jµ(X) = j1(t,x). (3.2)

This enforces that A2 = A3 = 0, if we in addition take θ = 0 initially, which is allowed

by gauge invariance. Setting the external current aligned only in the x-direction further

determines the orientation of the electric-field purely along this direction and a magnetic

field aligned in the y-direction. All these considerations together therefore impose

A1(X) = A1(t, z), E1(X) = E1(t, z), B2(X) = B2(t, z), j1(X) = j1(t, z), (3.3)

while all further components vanish. With these simplifications, we retain a single dynam-

ical equation to be solved for A1(z, t),

1

µ0c
∂0E1(t, z) +

1

µ0
∂2

3A1(t, z)−
( e
~

)2
ρ2(z)A1(t, z) + i

q

~
〈T ˆ̄Ψ(X)γ1Ψ̂(X)〉 − j1(t, z) = 0,

(3.4)

and a set of auxiliary equations, that are trivially satisfied with θ = 0, and need not be

solved explicitly,

− e
~
ρ2(z)∂0θ(t, z) + i

q

~
〈T ˆ̄Ψ(X)γ0Ψ̂(X)〉 = 0, (3.5)

e

~
ρ2(z)∂2,3θ(t, z) + i

q

~
〈T ˆ̄Ψ(X)γ2,3Ψ̂(X)〉 = 0, (3.6)(

ρ2(z)
[
∂2

0 − ∂2
3

]
− 2ρ(z)∂3ρ(z)∂3

)
θ(t, z) = 0. (3.7)

The quantum fermion correlator in (3.4) is determined through the operator expansion in

a mode-ansatz described in section 3.3. We have made explicit the time-ordering in the

fermion bilinear expectation values. This will however not play a role, since the fermion

fields are Gaussian.2

We will refer to the fermion bilinear appearing in the A1 equation (3.4) as the “fermion

current”, and to the combination (e/~)2ρ2(z)A1(z) as the “Higgs current”.

3.1 External current

In order to generate a stationary external magnetic field, we introduce a Gaussian, time-

dependent current on both boundaries z = 0, L, explicitly,

j1(X) = JmaxΘ(t)

(
exp

(
− z2

2σ2

)
− exp

(
−(z + L)2

2σ2

))
, (3.8)

2In a full quantum theory, further non-local diagrams could appear in a Schwinger-Dyson expansion

including quantum scalar/gauge internal lines. These appear in our treatment through solving the fermion

mode functions in the non-trivial time dependent scalar/gauge background.

– 5 –
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in terms of a rise function

Θ(t) =
1

2
tanh (ϑ) +

1

2
, ϑ = tan

(
πt

τ
− π

2

)
, (3.9)

with mτ = 80, σ = 0.8/
√

2 and Jmax = 0.5. Care must be taken on the lattice to

locate the peaks midway between the lattice-sites. The explicit expression is provided in

appendix A.1, this choice proving important for adequate convergence.

Because we want a stationary magnetic field, we found that in addition to having the

current on, we needed to introduce some damping to the gauge field dynamics to extract

energy. We therefore added the term

ζ

µ0c
E1, (3.10)

to eq. (3.4). For a free wave the equation of motion would then become

∂2
0A1 + ζ∂0A1 − ∂2

3A1 = 0. (3.11)

The shortest time for the gauge field to become stationary is mainly determined by the

longest wave-length mode. With one Neumann boundary at the edge of the box, where

∂3A1 = 0, and one wall at the superconductor, where A1 = 0, the longest wave-length mode

in the bulk has a frequency ω = π/(2db), with db the distance between the two boundaries.

So, to be critically damped, the parameter ζ may be chosen as

ζ = 2ω =
π

db
. (3.12)

In practice we have db ' 5.4, and we simulated using ζ = 6π/35. The reason that db does

not have a precise value is that one of the “boundaries” is the superconductor, and that

has a finite skin-depth. We find that a stationary magnetic field is achieved quickly. Also,

given that we are ultimately examining static quantities, the value of the damping has no

effect when measurements are taken.

3.2 Simple estimates

A similar physical system, except with one wall, was considered in [1], where a constant

external magnetic field Bout was seen to induce a constant magnetic field Bin inside the

box, of magnitude (~ = c = 1)

|Bin|
|Bout|

=
q2

24π2
g(md), (3.13)

where m and q are the mass and charge of the fermions, d is the thickness of the wall and

g(md) is a function to be evaluated numerically

g(md) =
1

2

∫ ∞
1

dτ

τ4

√
τ2 − 1

(
1 + 2τ2

)
exp[−2(md)τ ]. (3.14)

Since we have tunnelling from both sides and the walls are only a small distance from each

other, we will allow for an uncertainty factor between one and two to this expression when

comparing to our simulations.

– 6 –
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Figure 2. Comparing the classical (blue) transmission to the expected fermion signal (green) and

their sum (red), using q = 0.3 and md = 1.5, as a function of η.

In order to discern an effect of including fermion transmission through the wall, we

need to compare this to the classical transmission of the gauge field. From the equation

of motion, we see that for a stationary field without fermions, and with no external source

inside the wall and box, we have

∂2
3A1 = µ0

( e
~

)2
ρ2A1. (3.15)

Solving this for a step function of height 2η2 (a limiting case of the profile defined in (3.1)),

we find trivially (e = ~ = 1)

A1,wall(t, z) = A1,oute
−
√

2ηz, |B2(t, z)| = |∂3A1,wall(t, z)| = |B2,out|e−
√

2ηz, (3.16)

where A1,out is the gauge field at the outer edge of the wall, and we have imposed continuity

of A1 and B2 at the edge of the wall. We will see that the strict exponential dependence on

η is not reproduced numerically. We do not have a strict step function, there is a continuous

current at the boundary and a damping term in the bulk, so that although the field value

is stationary, the shape of the numerical solution may not be exactly as described here.

In figure 2, we show the predicted fermion and classical components of transmission

and their sum as a function of the barrier height η, given a wall thickness of md = 1.5.

We see that we should expect the fermion contribution to appear at η > 6. But for weaker

barriers, we expect it to be swamped by the classical contribution.

3.3 Symmetry and mode expansion

Symmetry considerations further imply a separable ansatz for the fermion mode function,

where the x, y, z-dependence enters as the product of three mode functions. In x and y

– 7 –
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these are simply the free-field, periodic plane-wave solutions. In z they are some unknown

functions to be determined numerically. We write

ψ
(U)
k,s (0,x) = eik1xeik2yχ

(U)
(k1,k2,λ,s)

(0, z), (3.17)

ψ
(V )
k,s (0,x) = e−ik1xe−ik2yχ

(V )
(−k1,−k2,−λ,s)(0, z), (3.18)

where the plane wave solutions in x and y are labelled by the momenta k1 and k2, and

the solution in the z-direction is labelled by a generic number λ, which in the plane-wave

case would be a momentum k3. In general λ just labels a complete set of solutions to the

actual equation of motion in z. s denotes sum over spin, and we have defined both U and

V mode functions.

The field operator may accordingly be expanded in these functions, with as coefficients

creation/annihilation operators b and d (b†, d†):

Ψ̂(X) =
√
~c
∑
s

∫
dk1

(2π)

dk2

(2π)

dλ

(2π)

[
b̂(k1,k2,λ,s)e

ik1xeik2yχ
(U)
(k1,k2,λ,s)

(t, z)

+d̂†(−k1,−k2,−λ)e
ik1xeik2xχ

(V )
(k1,k2,λ,s)

(t, z)
]
. (3.19)

3.4 Initial conditions

We initialize the system in the classical vacuum background

E1(0, z) = 0, A1(0, z) = 0, (3.20)

with the fermion vacuum quantum state.

This allows us to also introduce plane-wave solutions in z initially, with the label

λ→ k3, subject to the Neumann boundary conditions in appendix A.2. The combination

ψ̃+(X) = ei(k1x+k2y)
(
eik3zUk,s + iγ5γ3e−ik3zUk,s

)
, (3.21)

provides the initial solution associated to the positive-energy particles; likewise, the linear

combination

ψ̃−(X) = e−i(k1x+k2y)
(
e−ik3zVk,s + iγ5γ3eik3zVk,s

)
, (3.22)

provides the initial solution associated to the negative-energy anti-particles. Some care

must be taken to ensure that the boundary conditions are observed also on a finite-volume

discretized lattice. Details of this may be found in appendix B.1.

3.5 Renormalization

Fermion bilinears evaluated in the vacuum are in principle divergent, and we need to

renormalise the gauge field equation. We do this by performing a wave-function renormal-

ization, essentially by adding a counterterm to the classical electromagnetic field tensor in

the action. This results in the addition to the gauge field equation of motion, eq. (3.4), of

α

(
1

µ0c
∂0E1(t, z) +

1

µ0
∂2

3A1(t, z)

)
, (3.23)

– 8 –
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Figure 3. The stationary magnetic field in a typical simulation, after the current is turned on

(left). The grey lines represent the superconducting barriers. The corresponding Higgs current

(right). q = 0.3, η = 4, d = 1.5.

with α playing the role of counterterm. We can tune this parameter to give convergence of

the dynamics as we vary lattice spacing. This is described in some detail in appendix C,

but for most of the simulations presented here, α = 0, corresponding to us defining the

renormalization point at the scale dx = 0.3 (see below). We are not taking the contin-

uum limit (requiring a larger numerical lattice out of our reach), and the renormalization

procedure was used as a check that we have the lattice spacing effects under control.

4 Do we observe tunnelling of the 3rd kind?

We will now introduce natural units ~ = c = 1. The 3-dimensional lattice has spacings

dx = dy = dz = 0.3, in units where the fermion mass m is unity and we use the time-step

dt = 0.002. We choose the fermion-gauge coupling to be q = 0.3 and Higgs-gauge coupling

e to be unity. The Wilson coefficient is chosen to be rW = 0.5, and we checked that this

gives good control of the fermion doublers. There are Nx = Ny = 32, Nz = 60 lattice sites,

which is the largest attainable with our numerical resources. This means that the physical

length in the z-direction is mNzdz = 18, split up into 5.4 left and right of the barrier, 1.5

in each barrier and 4.2 inside the box (figure 1).

In each simulation, we start in the vacuum and gradually turn on the external source,

as described, from zero to the maximum value Jmax = 0.5. The turning on takes mτ = 80,

and we allow the system to settle until mt = 150. This yields a very accurately uniform

magnetic-field external to the superconducting-barrier, on both sides of the box.

In figure 3, we show the magnetic field B2(z) as the stationary state is achieved (left

panel). The superconducting barriers are shown as grey bands, and we see that the mag-

netic field grows near the boundary where the current is, and as it reaches the wall decays

exponentially to leave very little on the inside of the box. We also see that the wall is well

separated from the boundary effects of the external current.

– 9 –
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Figure 4. The fermion current in a typical simulation. q = 0.3, η = 4, d = 1.5.

We also show the Higgs current (right panel of figure 3), which has large peaks at the

outer edge of the walls, that decay exponentially to near zero inside the box. At the scale

displayed here, there is no apparent difference from including or omitting (not shown) the

fermions. In this example, the walls have width d = 1.5, and the amplitude of the walls is

η = 4. The parameter δ is much smaller than the lattice spacing, so the wall is close to a

step function. Note that essentially the Higgs current is ∝ A1ρ
2, and so the decay is due

to the decay of A1, and the peak follows from the near-step function of ρ. Figure 4 shows

the fermion current in the same simulation, and we again see peaks, also decaying through

the walls.

The fermion current at the boundary notably acts in accordance with Lenz’s Law

to oppose the magnetic-flux inducing the current. The current is hence aligned in the

opposite direction to the external current. Increasing the wall-strength either with or

without fermions also modifies the magnetic field-amplitude outside the superconductor.

These variations in the external magnetic field thus prevent a direct comparison between the

magnetic field transmitted through the superconducting barrier for different wall strengths.

A more suitable measure is the ratio between the magnetic field inside and outside the

box R = Bout/Bin, with “out” defined as halfway between boundary and wall and “in”

is the middle of the box. In practice, we vary the external current to produce a series

of “in”/“out” pairs for different external magnetic fields, and then determine the ratio

between the two with a linear fit.

We proceed to calculate this ratio with and without fermions for the range of wall-

strengths η. Given a constant width of the wall d = 1.5, the fermion contribution should

be independent of η as it does not couple to the Higgs field. On the other hand, the

fermion current clearly notices the change in the gauge field behaviour as it enters the

super-conductor (figure 4).

Figure 5 shows the ratio Bin/Bout as a function of η, and is our main result.

We see that for small η, the fermion (red) and no-fermion (blue) results are indistin-

guishable. As expected, they are not strictly exponential, but the slope is comparable to

the simple estimate eq. (3.16) (shown in grey, dashed). As we reach η ' 5, the two curves
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2 3 4 5 6 7 8
η

10−6

10−5

10−4

10−3
B

in
/B

ou
t

without fermions

with fermions

simple exponential

analytic 3.11-3.12

Figure 5. The ratio of magnetic fields inside and outside the box, when varying the wall strength

η with (red) and without (blue) fermions. Also shown are the analytic estimates (grey solid and

grey dashed). Note the log-scale.

diverge, and the fermion contribution starts to dominate, settling at a constant value of

' 2 × 10−6 i.e. the analytic estimate for q = 0.3 and md = 1.5, of 3.4 × 10−6, within a

factor of two. We consider this a reasonably successful confirmation of that result.

5 Conclusion

Although not tunnelling in the conventional sense, tunnelling of the 3rd kind is an in-

teresting application of relativistic quantum field effects in a laboratory experiment. We

have implemented an idealized laboratory-system of two superconducting slabs shielding

a central box from classical electromagnetic fields. Recently developed methods in real-

time quantum field theory could then be adapted and refined to successfully simulate the

creation of magnetic fields inside the box through this novel tunnelling phenomenon.

Considering the numerical effort involved and the complexity of detail in the lattice

implementation, we are pleasantly surprised that we were able to identify the signal at the

level of 10−5,−6, in accordance with the perturbative prediction within a factor of two. We

have relegated many of these details to the appendices, but stress that they are essential

for a stable and sufficiently precise computation.

Now that the laboratory is calibrated, it would be interesting to investigate other

instances of tunnelling of the 3rd kind, including radiating photons from the sources directly

onto the barriers. A specific frequency dependence is expected (see also [1]). Then there is

no semi-static magnetic field outside the barriers, and the signal is likely even smaller. Early
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attempts have been unsuccessful, but are still in progress. Other setups under consideration

include different configurations and number of superconducting plates, which will however

require larger physical size of the box, with the corresponding increase in numerical effort.
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A Lattice implementation

In the following, we will provide the details of the lattice action and equations of motion,

including how to treat Neumann boundary conditions for our application on a finite lattice

in z.

A.1 Equations of motion

The lattice action is discretized as

S(X) =
∆V

c

[∑
i

~2

2qµ0(∆xi)2(∆x0)2
(2− Ui0(X)− U0i(X)) (A.1)

−
∑
ij

~2

4q2µ0(∆xi)2(∆xj)2
(2− Uij(X)− Uji(X))

−
∑
µ

1

2∆xµ
Ψ̄(X)γµ (Uµ(X)Ψ(X + µ)− Uµ(X − µ)Ψ(X − µ))

+
∑
i

rw
1

2∆xi
Ψ̄(X) (Uµ(X)Ψ(X + i)− 2Ψ(X) + Uµ(X − i)Ψ(X − i))

+
mc

~
Ψ̄(X)Ψ̄(X)

+
ρ2(X)

2(∆x0)2

(
2−Θ†(X)U

e/q
0 (X)Θ(X + 0)−Θ†(X + 0)U

(e/q)†
0 (X)Θ(X)

)
−
∑
i

ρ2(X)

2(∆xi)2

(
2−Θ†(X)U

e/q
i (X)Θ(X + i)−Θ†(X + i)U

(e/q)†
i (X)Θ(X)

)]
,

in terms of the lattice link Uµ, plaquette Uµν and Higgs field Θ variables, defined through

Uµ(X) ≡ exp
(
−i q

~
∆xµAµ(X)

)
, (A.2)

Uµν(X) ≡ Uµ(X)Uν(X + µ)U †µ(X + µ)Uν(X), (A.3)

Θ(X) ≡ exp (iθ(X)) . (A.4)
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Eventually, ~ and c will be put to unity, but these are included for completeness. X

is a lattice point (t, x, y, z), ∆xi are the spatial lattice spacings, which may be different

although in the main simulations, they are the same, ∆x1 = ∆x3 = ∆x3 = 0.3. ∆V is their

product and ∆x0 is the time-step, which is taken much smaller than the spatial spacings,

0.0002. rw is the Wilson coefficient, which will be set to 1/2, making the fermion lattice

doublers massive and drop out of the spectrum. ±i, ±j, ±0 in the field arguments denotes

evaluation at a lattice point shifted in the corresponding spatial or time direction.

Variation with respect to the lattice fields yields the 3+1D equations of motion, Gauss

Law: ∑
i

1

∆xi

1

µ0c
(Ei(X)− Ei(X − i)) +

q

~
Im{〈T Ψ̄(X)γ0Ψ(X + 0)〉}

+
1

∆x0

e

~
ρ2(X)Im{Θ†(X)Θ(X + 0)} = 0; (A.5)

gauge field equation of motion (omitting for now the external current and the damping

term):

1

∆x0

1

µ0c
(Ei(X)− Ei(X − 0))

∑
j

1

∆xi(∆xj)2

~
qµ0

Im {Uij(X)− Uji(X − j)}

− q

~
Im
{
〈T Ψ̄(X)γiUi(X)Ψ(X + i)〉

}
+
q

~
rwIm

{
〈T Ψ̄(X)Ui(X)Ψ(X + i)〉

}
+

1

∆xi

e

~
ρ2(X)Im

{
Θ†(X)U

e/q
i Θ(X + i)

}
= 0; (A.6)

fermion field (operator) equation of motion:

1

2∆x0
γ0
(
Ψ(X + 0)−Ψ(X − 0)

)
+
∑
i

1

2∆xi
γi
(
Ui(X)Ψ(X + i)− U †i (X − i)Ψ(X − i)

)
+
mc

~
Ψ(X)

−
∑
i

1

∆xi

rw
2

(
Ui(X)Ψ(X + i)− 2Ψ(X) + U †µ(X − i)Ψ(X − i)

)
= 0; (A.7)

and Higgs/scalar field equation of motion:

1

∆x0
ρ2(X) (Π(X)−Π(X − 0))−

∑
i

1

(∆xi)2

(
ρ2(X)Im

{
Θ†(X)U

e/q
i (X)Θ(X + i)

}
(A.8)

−ρ2(X − i)Im
{

Θ†(X − i)U e/qi (X − i)Θ(X)
})

= 0.

We have defined the field momenta, for the Higgs field

Π(X) ≡ 1

2i∆x0

(
Θ†(X)Θ(X + 0)−Θ†(X + 0)Θ(X)

)
, (A.9)

and the electric field

Ei(X) =
−i

∆x0∆xi

~c
2q

(U0i(X)− Ui0(X)) . (A.10)
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After applying the symmetry considerations described in section 3, these reduce to

the equation for the A1 gauge field (T,X3 are now time and z coordinate on the lattice,

respectively),

1

∆x0

1

µ0c
(E1(T,X3)− E1(T − 0, X3))

+
1

∆x1(∆x3)2

~
qµ0

Im {U13(T,X3)− U31(T,X3 − 3)}

− q

~
Im
{
〈T ˆ̄Ψ(X)γ1U1(T,X3)Ψ̂(X + 1)〉

}
+
q

~
rwIm

{
〈T ˆ̄Ψ(X)U1(T,X3)Ψ̂(X + 1)〉

}
+

1

∆x1

e

~
ρ2(T,X3)Im

{
U
e/q
1 (T,X3)

}
= 0, (A.11)

with

E1(T,X3) =
−i

∆x0∆xi

~c
2q

(U0i(T,X3)− Ui0(T,X3)) . (A.12)

The lattice fermions obey

1

∆x0

1

2
γ0
(
χ

(A)
(K1,K2,Λ,s)

(T + 0, X3)− χ(A)
(K1,K2,Λ,s)

(T − 0, X3)
)

(A.13)

+
1

∆x1
γ1i sin

(
∆x1

[
K1 −

q

~
A1(T,X3)

])
χ

(A)
(K1,K2,Λ,s)

(T,X3)

+
1

∆x2
γ2i sin (∆x2K2)χ

(A)
(K1,K2,Λ,s)

(T,X3)

+
1

∆x3

1

2
γ3
(
χ

(A)
(K1,K2,Λ,s)

(T,X3 + 3)− χ(A)
(K1,K2,Λ,s)

(T,X3 − 3)
)

+
mc

~
χ

(A)
(K1,K2,Λ,s)

(T,X3)

+
1

∆x1
rw

(
cos
(

∆x1

[
K1 −

q

~
A1(T,X3)

])
− 1
)
χ

(A)
(K1,K2,Λ,s)

(T,X3)

+
1

∆x2
rw (cos (∆x2K2)− 1)χ

(A)
(K1,K2,Λ,s)

(T,X3)

+
1

∆x3

rw
2

(
χ

(A)
(K1,K2,Λ,s)

(T,X3 + 3)− 2χ
(A)
(K1,K2,Λ,s)

(T,X3) + χ
(A)
(K1,K2,Λ,s)

(T,X3 − 3)
)

= 0.

In addition, we have the now redundant constraint-equations

− q
~

Im
{
〈T ˆ̄Ψ(X)γ0Ψ̂(X + 0)〉

}
+ j0(X) = 0, (A.14)

q

~
Im
{
〈T ˆ̄Ψ(X)γ2Ψ̂(X + 2)〉

}
− q

~
rwIm

{
〈T ˆ̄Ψ(X)Ψ̂(X + 2)〉

}
= 0, (A.15)

q

~
Im
{
〈T ˆ̄Ψ(X)γ3Ψ̂(X + 3)〉

}
− q

~
rwIm

{
〈T ˆ̄Ψ(X)Ψ̂(X + 3)〉

}
= 0. (A.16)

The fermion correlators are

〈T ˆ̄Ψ(X)ÔΨ̂(X + 0)〉 =
~c
2

∑
K1,K2,Λ

∆K1

(2π)

∆K2

(2π)

∆Λ

(2π)
(A.17)

×
(
χ̄

(V )
(K1,K2,Λ,s)

(T,X3)Ôχ
(V )
(K1,K2,Λ,s)

(T + 0, X3)

−χ̄(U)
(K1,K2,Λ,s)

(T,X3)Ôχ
(U)
(K1,K2,Λ,s)

(T + 0, X3)
)
,
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〈T ˆ̄Ψ(X)ÔU1(T,X3)Ψ̂(X + 1)〉 =
~c
2

∑
K1,K2,Λ

∆K1

(2π)

∆K2

(2π)

∆Λ

(2π)
ei∆x1(K1−qA1(T,X3)) (A.18)

×
(
χ̄

(V )
(K1,K2,Λ,s)

(T,X3)Ôχ
(V )
(K1,K2,Λ,s)

(T,X3)

−χ̄(U)
(K1,K2,Λ,s)

(T,X3)Ôχ
(U)
(K1,K2,Λ,s)

(T,X3)
)
,

〈T ˆ̄Ψ(X)ÔΨ̂(X + 2)〉 =
~c
2

∑
K1,K2,Λ

∆K1

(2π)

∆K2

(2π)

∆Λ

(2π)
ei∆x2K2 (A.19)

×
(
χ̄

(V )
(K1,K2,Λ,s)

(T,X3)Ôχ
(V )
(K1,K2,Λ,s)

(T,X3)

−χ̄(U)
(K1,K2,Λ,s)

(T,X3)Ôχ
(U)
(K1,K2,Λ,s)

(T,X3)
)
,

〈T ˆ̄Ψ(X)ÔΨ̂(X + 3)〉 =
~c
2

∑
K1,K2,Λ

∆K1

(2π)

∆K2

(2π)

∆Λ

(2π)
(A.20)

×
(
χ̄

(V )
(K1,K2,Λ,s)

(T,X3)Ôχ
(V )
(K1,K2,Λ,s)

(T,X3 + 3)

−χ̄(U)
(K1,K2,Λ,s)

(T,X3)Ôχ
(U)
(K1,K2,Λ,s)

(T,X3 + 3)
)

.

Both the damping and external current are added by hand to match the dynamics in

the continuum limit. The external current explicitly is

j1(X) = JmaxΘ(T )

(
exp

(
−(X3 − z2

0

2σ2

)
− exp

(
−(X3 + zL)2

2σ2

))
, (A.21)

defined in terms of the rise function (3.9). Examining both the discretized fermion and

Higgs currents indicates the currents on the lattice typically involve the field values at

adjacent lattice-sites and hence the discretized currents naturally correspond to physical

locations midway between the sites. This (and the constraint on the continuum limit)

therefore informs the choice to set z0 = −∆x3/2 and zL = (NZ − 1/2)∆x3.

A.2 Boundary conditions

The Neumann conditions on the z boundaries take the form

∂3E1 = ∂3A1 = 0, (A.22)

These imply that the electric field on the lattice satisfies

E1(X)|n3=−1 = E1(X)|n3=0 , (A.23)

E1(X)|n3=Nz
= E1(X)|n3=Nz−1 , (A.24)

and the gauge field likewise fulfils

A1(X)|n3=−1 = A1(X)|n3=0 , (A.25)

A1(X)|n3=Nz
= A1(X)|n3=Nz−1 . (A.26)

The Neumann conditions for the fermion field mean that

∂3ρ = ∂3jf,1 = ∂3jf,2 = 0 and jf,3 = 0, (A.27)
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where ρ is the fermion charge density, and jf,1, jf,2, jf,3 the fermion currents along x, y

and z directions respectively. (Therefore, no current flows through the z boundaries.) The

equivalent conditions on the lattice may be satisfied through imposing at the two boundaries

Ψ(X)
∣∣
n3=−1

= B0Ψ(X)
∣∣
n3=0

, (A.28)

Ψ(X)
∣∣
n3=Nz

= BNΨ(X)
∣∣
n3=Nz−1

, (A.29)

in terms of the constant, 4 × 4 matrices B0/N . We hence determine B0/N can only be

chosen from ±iγ5γ3.

The definition of the Neumann conditions however involve an inherent orientation

through the relative sign of the matrices. Specifically, the operation

± i
(
N̂1γ

5γ1 + N̂2γ
5γ2 + N̂3γ

5γ3
)
, (A.30)

may define the projection of the matrix ±iγ5γi on the outward-orientated, normal vector-

field N̂(X) of the lattice. This in particular on the z-boundaries implies,

±i
(
N̂1γ

5γ1 + N̂2γ
5γ2 + N̂3γ

5γ3
) ∣∣∣

n3=−1
= ∓iγ5γ3, (A.31)

±i
(
N̂1γ

5γ1 + N̂2γ
5γ2 + N̂3γ

5γ3
) ∣∣∣

n3=Nz−1
= ±iγ5γ3, (A.32)

leading to two possible choices:

B0 = +iγ5γ3,

BN = −iγ5γ3,
or

B0 = −iγ5γ3,

BN = +iγ5γ3.
(A.33)

(With these options also, the fermion zero-momentum modes don’t exist on the lattice.)

We choose the former for implementation. This constraint in the continuum limit implies

further

(I4 ∓B0/N )Ψ(X) = 0, (A.34)

at the upper and lower boundaries respectively. Splitting the fermion spinor into the two-

component up-spinor Ψu and down-spinor Ψd yields

Ψu(X)± σ3Ψd(X) = 0,

Ψd(X)± σ3Ψu(X) = 0. (A.35)

These two equations are the same, and thus underdetermine the fermion components. The

boundary condition therefore may support an arbitrary fermion-current in the x and y

direction on the boundary, consistent with the ansatz.

B Lattice fermions

We discretize the fermion field on the lattice taking care of the lattice doublers through a

Wilson term. The standard procedure on how this works may be found elsewhere [14].
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B.1 Boundary conditions and mode consistency

Substituting the Neumann vacuum solutions into the mode expansion and applying the

ladder commutators with the identification also that initially Λ = K3 (though importantly,

the weighting ∆Λ/(2π) of the integral remains to be determined subsequently) yields:{
Ψ̂a(0,X),Ψ̂†b(0,Y)

}
=

∑
K1,K2,K3

∆K1

(2π)

∆K2

(2π)

∆Λ

(2π)
eiK1(X1−Y1)eK2(X2−Y2) (B.1)

×
[(

eiK3(X3−Y3) + e−iK3(X3−Y3)
)∑

s

((
UK,s

)
a

(
U †K,s

)
b

+
(
V−K,s

)
a

(
V †−K,s

)
b

)
+
∑
c,d

e−iK3(X3+Y3)i
(
γ5
)
ac

(
γ3
)
cd

∑
s

((
UK,s

)
d

(
U †K,s

)
b

+
(
V−K,s

)
d

(
V †−K,s

)
b

)

+
∑
c,d

eiK3(X3+Y3)i
(
γ5
)
dc

(
γ3
)
cb

∑
s

((
UK,s

)
a

(
U †K,s

)
d

+
(
V−K,sa

)
a

(
V †−K,s

)
d

)]
.

The positive and negative frequency solutions further satisfy the standard result

∑
s

UK,sU
†
K,s =

i

2ωK

((mc
~

)
I4 − i

∑
µ

γµKµ

)
γ0, (B.2)

∑
s

VK,sV
†
K,s =

i

2ωK

(
−
(mc

~

)
I4 − i

∑
µ

γµKµ

)
γ0, (B.3)

and when inserted in the initial condition becomes{
Ψ̂a(0,X), Ψ̂†b(0,Y)

}
=

∑
K1,K2,Λ

∆K1

(2π)

∆K2

(2π)

∆Λ

(2π)
eiK1(X1−Y1)eK2(X2−Y1),

×
(

cos (K3[X3 − Y3]) (I4)ab + cos (K3[X3 + Y3])
∑
c,d

i
(
γ5
)
ac

(
γ3
)
cb

)
. (B.4)

Choosing

x3 =

(
n3 +

1

2

)
∆x3, (B.5)

where n3 is the lattice-site index ensures that these vacuum modes satisfy the Neumann

conditions at the origin. We also choose

x1,2 = n1,2∆x1,2, (B.6)

for the x and y direction, respectively, with periodic boundary conditions. For the z

coordinate, adding two positions implies

X3 + Y3 = (n3 +m3 + 1)∆x3. (B.7)

This is greater than zero everywhere and hence the second term in the correlator ex-

pansion (B.4) involves a summation over anti-symmetric cosine values, entirely cancelling

pairwise to zero for even Nz.
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The z relation similarly implies

X3 − Y3 = (n3 −m3)∆x3, (B.8)

non-zero over the lattice except at X3 = Y3, and hence the summation in the z-mode

direction when X3 6= Y3 again entirely cancels for even Nz . At X3 = Y3 though, the cosine

term equals unity. And equally the summation over the x and y-mode directions vanish

everywhere except where X1 = Y1 and X2 = Y2. The first term in the correlator expansion

therefore yields {
Ψ̂a(0,X), Ψ̂†b(0,Y)

}
= N1N2N3

∆K1

(2π)

∆K2

(2π)

∆Λ

(2π)
δ3
XYδab. (B.9)

Choosing the undetermined ∆λ weighting to satisfy

∆Λ

(2π)
=

∆K3

π
=
K3|κ3+1

− K3|κ3
π

, (B.10)

explicitly specifies this constant through the lattice wave-vectors. Substituting the above

distance relations into the initial condition, we find

K1,2 =
2π

L1/2

(
κ1/2 +

1

2

)
, (B.11)

K3 =
π

L3

(
κ3 +

1

2

)
, (B.12)

where κi is the site-index in the i-direction of the discrete mode-space. These therefore

imply that the initial correlator satisfies{
Ψ̂a(0,X), Ψ̂†b(0,Y)

}
= δab

δ3
XY

∆x1∆x2∆x3
. (B.13)

This precisely reproduces the canonical quantization requirements on the discretized fermi-

onic field.

C Renormalization

The fermion current on the lattice prior to any renormalization involves both the physical

component and the divergent term dependent on the discrete spacing:

jf (X,∆x) ≡
(
q

~
Im
{
〈 ˆ̄Ψ(X)γ1U1(T,X3)Ψ̂(X + 1)〉

}
− q

~
rwIm

{
〈 ˆ̄Ψ(X)U1(T,X3)Ψ̂(X + 1)〉

})∣∣∣∣
∆x

= jphysical(X,∆x) + jdiv(X,∆x). (C.1)

We will assume that the lattice-spacing dependence of the physical component is small. In

this case, we may to a good approximation write

jdiv(X,∆x) = jf (X,∆x)− jf (X,∆xref) + jdiv(X,∆xref). (C.2)
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Renormalization is achieved by introducing constant counterterms for the operators in the

action. Since the only dynamical equation under consideration is for the gauge field, we will

introduce a field renormalization counterterm multiplying the electromagnetic field tensor.

An identical factor for simplicity may be chosen for both the electric field contribution and

the term involving purely the plaquettes Uij . We will introduce these counterterms at the

level of the equations of motion.

This plaquette term in the electric field dynamics corresponds in the continuum limit

precisely to the derivative of the magnetic field. The counterterms thus involve a modifi-

cation to the electric and magnetic field.

Any lattice-spacing dependence in the renormalization current accordingly occurs with-

in the renormalization coefficient while the spatial variation of the renormalization compo-

nent occurs entirely in the discretized electromagnetic fields:

jdiv(X,∆x) = α(∆x)

(
1

∆x0

1

µ0c
(E1(T,X3)− E1(T − 0, X3))

+
1

∆x1(∆x3)2

~
qµ0

Im {U13(T,X3)− U31(T,X3 − 3)}
)

. (C.3)

The simple case involving a static state and the magnetic gradient identical for each

lattice spacings therefore yields

α(∆x) = ∆x1(∆x3)2 qµ0

~
jf (X,∆x)− jf (X,∆xref )

Im {U13(T,X3)− U31(T,X3 − 3)} + α(X,∆xref ). (C.4)

We choose α(X,∆xref ) = 0. For comparison, the perturbative calculation for our choice

parameters yields a value of α(X,∆xref ) = 0.004, which is a small correction to the

effective gauge coupling.

Obtaining the renormalization coefficient, in practice, is accomplished through evolving

the fermion fields from the initial vacuum-configuration to the final, static state with the

gauge field set manually (and without any Higgs-field). Substituting the external current

on the lattice into the continuum gauge dynamics determines the magnetic field in the

static state satisfies

1

µ0
∂3B2(t, x3) =

1

µ0
∂2

3A1(t, x3) = |J | exp

(
−(z − z0)2

2σ2

)
− |J | exp

(
−(z − zL)2

2σ2

)
. (C.5)

Integrating this expression we find

A1(t, x3) = µ0

√
π

2
σ|J |

[
(z − z0) erf

(
−(z − z0)2

2σ2

)
− (z + zL) erf

(
−(z + zL)2

2σ2

)

+

√
2

π
σ exp

(
−(z − z0)2

2σ2

)
−
√

2

π
σ exp

(
−(z + zL)2

2σ2

)]
+BCz +AC , (C.6)
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Figure 6. The bare current jf (left) and the renormalized current (right) for ∆x1 = 0.4 (blue),

0.3 (black), 0.2 (red). α = 0 for ∆x1 = 0.2 and α = 0 for ∆x1 = 0.2; ∆x2 = 0.3 is the reference

lattice spacing where α ≡ 0. Nx∆x1 = Ny∆xy = 9.6, Nz∆x3 = 9.6, q = 0.3, e = 1 and periodic

boundaries are applied in all directions.

where

BC = −µ0

√
π

8
σ|J |

[
erf

(
−(zM − z0)2

2σ2

)
− erf

(
−(zM + zL)2

2σ2

)]
(C.7)

AC = −µ0

√
π

2
σ|J |

[
(zM − z0) erf

(
−(zM − z0)2

2σ2

)
− (zM + zL) erf

(
−(zM + zL)2

2σ2

)

+

√
2

π
σ exp

(
−(zM − z0)2

2σ2

)
−
√

2

π
σ exp

(
−(zM + zL)2

2σ2

)]
−BCzM (C.8)

zM =
z0 + zL

2
. (C.9)

The constants are chosen to ensure the analytic magnetic and gauge fields viewed along

the z-direction form a symmetrical configuration centred on the z-axis. Converting the

coordinates trivially to lattice positions and the rise function (3.9) multiplying this static

configuration consequently provides the gauge-field background for the fermion evolution.

Obtaining the renormalization coefficients hence enables jphysical = jf − jdiv to replace

the bare current in the fully dynamical case. The figure 6 shows the convergence (right) on

implementing the renormalization scheme for ∆xref = (0.3, 0.3, 0.3) with ∆x2 = ∆x3 = 0.3

fixed and ∆x1 varying, and we see that the curves for the renormalized current lie on top

of each other.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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