1,019 research outputs found

    Possible geopotential improvement from satellite altimetry

    Get PDF
    Possible geopotential improvement from satellite altimetr

    Spontaneous structure formation in a network of chaotic units with variable connection strengths

    Full text link
    As a model of temporally evolving networks, we consider a globally coupled logistic map with variable connection weights. The model exhibits self-organization of network structure, reflected by the collective behavior of units. Structural order emerges even without any inter-unit synchronization of dynamics. Within this structure, units spontaneously separate into two groups whose distinguishing feature is that the first group possesses many outwardly-directed connections to the second group, while the second group possesses only few outwardly-directed connections to the first. The relevance of the results to structure formation in neural networks is briefly discussed.Comment: 4 pages, 3 figures, REVTe

    A Heterosynaptic Learning Rule for Neural Networks

    Full text link
    In this article we intoduce a novel stochastic Hebb-like learning rule for neural networks that is neurobiologically motivated. This learning rule combines features of unsupervised (Hebbian) and supervised (reinforcement) learning and is stochastic with respect to the selection of the time points when a synapse is modified. Moreover, the learning rule does not only affect the synapse between pre- and postsynaptic neuron, which is called homosynaptic plasticity, but effects also further remote synapses of the pre- and postsynaptic neuron. This more complex form of synaptic plasticity has recently come under investigations in neurobiology and is called heterosynaptic plasticity. We demonstrate that this learning rule is useful in training neural networks by learning parity functions including the exclusive-or (XOR) mapping in a multilayer feed-forward network. We find, that our stochastic learning rule works well, even in the presence of noise. Importantly, the mean learning time increases with the number of patterns to be learned polynomially, indicating efficient learning.Comment: 19 page

    About the ergodic regime in the analogical Hopfield neural networks. Moments of the partition function

    Full text link
    In this paper we introduce and exploit the real replica approach for a minimal generalization of the Hopfield model, by assuming the learned patterns to be distributed accordingly to a standard unit Gaussian. We consider the high storage case, when the number of patterns is linearly diverging with the number of neurons. We study the infinite volume behavior of the normalized momenta of the partition function. We find a region in the parameter space where the free energy density in the infinite volume limit is self-averaging around its annealed approximation, as well as the entropy and the internal energy density. Moreover, we evaluate the corrections to their extensive counterparts with respect to their annealed expressions. The fluctuations of properly introduced overlaps, which act as order parameters, are also discussed.Comment: 15 page

    Learning by message-passing in networks of discrete synapses

    Get PDF
    We show that a message-passing process allows to store in binary "material" synapses a number of random patterns which almost saturates the information theoretic bounds. We apply the learning algorithm to networks characterized by a wide range of different connection topologies and of size comparable with that of biological systems (e.g. n≃105−106n\simeq10^{5}-10^{6}). The algorithm can be turned into an on-line --fault tolerant-- learning protocol of potential interest in modeling aspects of synaptic plasticity and in building neuromorphic devices.Comment: 4 pages, 3 figures; references updated and minor corrections; accepted in PR

    Random Walks for Spike-Timing Dependent Plasticity

    Full text link
    Random walk methods are used to calculate the moments of negative image equilibrium distributions in synaptic weight dynamics governed by spike-timing dependent plasticity (STDP). The neural architecture of the model is based on the electrosensory lateral line lobe (ELL) of mormyrid electric fish, which forms a negative image of the reafferent signal from the fish's own electric discharge to optimize detection of sensory electric fields. Of particular behavioral importance to the fish is the variance of the equilibrium postsynaptic potential in the presence of noise, which is determined by the variance of the equilibrium weight distribution. Recurrence relations are derived for the moments of the equilibrium weight distribution, for arbitrary postsynaptic potential functions and arbitrary learning rules. For the case of homogeneous network parameters, explicit closed form solutions are developed for the covariances of the synaptic weight and postsynaptic potential distributions.Comment: 18 pages, 8 figures, 15 subfigures; uses revtex4, subfigure, amsmat

    How glassy are neural networks?

    Full text link
    In this paper we continue our investigation on the high storage regime of a neural network with Gaussian patterns. Through an exact mapping between its partition function and one of a bipartite spin glass (whose parties consist of Ising and Gaussian spins respectively), we give a complete control of the whole annealed region. The strategy explored is based on an interpolation between the bipartite system and two independent spin glasses built respectively by dichotomic and Gaussian spins: Critical line, behavior of the principal thermodynamic observables and their fluctuations as well as overlap fluctuations are obtained and discussed. Then, we move further, extending such an equivalence beyond the critical line, to explore the broken ergodicity phase under the assumption of replica symmetry and we show that the quenched free energy of this (analogical) Hopfield model can be described as a linear combination of the two quenched spin-glass free energies even in the replica symmetric framework

    Analysis of Oscillator Neural Networks for Sparsely Coded Phase Patterns

    Full text link
    We study a simple extended model of oscillator neural networks capable of storing sparsely coded phase patterns, in which information is encoded both in the mean firing rate and in the timing of spikes. Applying the methods of statistical neurodynamics to our model, we theoretically investigate the model's associative memory capability by evaluating its maximum storage capacities and deriving its basins of attraction. It is shown that, as in the Hopfield model, the storage capacity diverges as the activity level decreases. We consider various practically and theoretically important cases. For example, it is revealed that a dynamically adjusted threshold mechanism enhances the retrieval ability of the associative memory. It is also found that, under suitable conditions, the network can recall patterns even in the case that patterns with different activity levels are stored at the same time. In addition, we examine the robustness with respect to damage of the synaptic connections. The validity of these theoretical results is confirmed by reasonable agreement with numerical simulations.Comment: 23 pages, 11 figure

    Analogue neural networks on correlated random graphs

    Full text link
    We consider a generalization of the Hopfield model, where the entries of patterns are Gaussian and diluted. We focus on the high-storage regime and we investigate analytically the topological properties of the emergent network, as well as the thermodynamic properties of the model. We find that, by properly tuning the dilution in the pattern entries, the network can recover different topological regimes characterized by peculiar scalings of the average coordination number with respect to the system size. The structure is also shown to exhibit a large degree of cliquishness, even when very sparse. Moreover, we obtain explicitly the replica symmetric free energy and the self-consistency equations for the overlaps (order parameters of the theory), which turn out to be classical weighted sums of 'sub-overlaps' defined on all possible sub-graphs. Finally, a study of criticality is performed through a small-overlap expansion of the self-consistencies and through a whole fluctuation theory developed for their rescaled correlations: Both approaches show that the net effect of dilution in pattern entries is to rescale the critical noise level at which ergodicity breaks down.Comment: 34 pages, 3 figure

    The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b

    Full text link
    We present twenty-three transit light curves and seven occultation light curves for the ultra-short period planet WASP-43 b, in addition to eight new measurements of the radial velocity of the star. Thanks to this extensive data set, we improve significantly the parameters of the system. Notably, the largely improved precision on the stellar density (2.41+-0.08 rho_sun) combined with constraining the age to be younger than a Hubble time allows us to break the degeneracy of the stellar solution mentioned in the discovery paper. The resulting stellar mass and size are 0.717+-0.025 M_sun and 0.667+-0.011 R_sun. Our deduced physical parameters for the planet are 2.034+-0.052 M_jup and 1.036+-0.019 R_jup. Taking into account its level of irradiation, the high density of the planet favors an old age and a massive core. Our deduced orbital eccentricity, 0.0035(-0.0025,+0.0060), is consistent with a fully circularized orbit. We detect the emission of the planet at 2.09 microns at better than 11-sigma, the deduced occultation depth being 1560+-140 ppm. Our detection of the occultation at 1.19 microns is marginal (790+-320 ppm) and more observations are needed to confirm it. We place a 3-sigma upper limit of 850 ppm on the depth of the occultation at ~0.9 microns. Together, these results strongly favor a poor redistribution of the heat to the night-side of the planet, and marginally favor a model with no day-side temperature inversion.Comment: 14 pages, 6 tables, 11 figures. Accepted for publication in A&
    • …
    corecore