In this paper we continue our investigation on the high storage regime of a
neural network with Gaussian patterns. Through an exact mapping between its
partition function and one of a bipartite spin glass (whose parties consist of
Ising and Gaussian spins respectively), we give a complete control of the whole
annealed region. The strategy explored is based on an interpolation between the
bipartite system and two independent spin glasses built respectively by
dichotomic and Gaussian spins: Critical line, behavior of the principal
thermodynamic observables and their fluctuations as well as overlap
fluctuations are obtained and discussed. Then, we move further, extending such
an equivalence beyond the critical line, to explore the broken ergodicity phase
under the assumption of replica symmetry and we show that the quenched free
energy of this (analogical) Hopfield model can be described as a linear
combination of the two quenched spin-glass free energies even in the replica
symmetric framework