Random walk methods are used to calculate the moments of negative image
equilibrium distributions in synaptic weight dynamics governed by spike-timing
dependent plasticity (STDP). The neural architecture of the model is based on
the electrosensory lateral line lobe (ELL) of mormyrid electric fish, which
forms a negative image of the reafferent signal from the fish's own electric
discharge to optimize detection of sensory electric fields. Of particular
behavioral importance to the fish is the variance of the equilibrium
postsynaptic potential in the presence of noise, which is determined by the
variance of the equilibrium weight distribution. Recurrence relations are
derived for the moments of the equilibrium weight distribution, for arbitrary
postsynaptic potential functions and arbitrary learning rules. For the case of
homogeneous network parameters, explicit closed form solutions are developed
for the covariances of the synaptic weight and postsynaptic potential
distributions.Comment: 18 pages, 8 figures, 15 subfigures; uses revtex4, subfigure, amsmat