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Learning by Message Passing in Networks of Discrete Synapses

Alfredo Braunstein' and Riccardo Zecchina'

YICTP, Strada Costiera 11, 1-34100 Trieste, Italy
(Received 8 November 2005; published 25 January 2006)

We show that a message-passing process allows us to store in binary “material’’ synapses a number of
random patterns which almost saturate the information theoretic bounds. We apply the learning algorithm
to networks characterized by a wide range of different connection topologies and of size comparable with
that of biological systems (e.g., n = 10°-10%). The algorithm can be turned into an online—fault
tolerant—learning protocol of potential interest in modeling aspects of synaptic plasticity and in building

neuromorphic devices.
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Learning and memory are implemented in neural sys-
tems mostly through distributed changes of synaptic effi-
cacy [1]. The learning problem in neural networks (NNs)
asks whether one can find values for the synaptic efficacies
such that a set of p patterns are stored simultaneously.
Depending on the structure of the network—feed-forward
or recurrent—the storage problem is either seen as a
classification problem (input patterns are classified accord-
ing to the output of the network) or as an attractor dynam-
ics problem (patterns are the external stimuli which drive
the dynamics of the network to the closest attractor) [2]. In
any case, understanding the mechanisms underlying syn-
aptic changes constitutes a crucial step for modeling real
neural circuits (e.g., the Purkinje cells in the cerebellum
[3]). On the purely theoretical side many basic results have
been derived, ranging from information theoretic bounds
[4,5] and statistical physics analysis of learning capabil-
ities [6] in model NN to concrete algorithms, like artificial
pattern recognition systems. Still there exist many open
conceptual problems that are related to the need of satisfy-
ing realistic constraints [7]. Modeling material synapses is
possibly one of the most basic ones, the discrete case (and
specifically the switchlike binary one) being of particular
experimental [8] and technological interest [9]: recent ex-
periments—at the single synapse resolution level—have
shown that some synapses undergo potentiation or depres-
sion between a restricted number of discrete stable states
through switchlike unitary events [8]. It is has been known
for many years that the discreteness of synaptic efficacies
makes the learning problem extraordinarily difficult [10]:
even the task of finding binary synaptic weights for a single
layer network (the binary perceptron) which classifies in
two classes a given set of patterns is both NP-complete and
computationally hard on average (as observed in classical
numerical experiments). In spite of the fact that binary
networks can, in principle, classify correctly an extensive
number p = an of random patterns with » binary synapses
[11], in practice, there exists no known algorithm which is
able to store exactly more than just a logarithmic number
[12,13] as soon as a subexponential cut is put on their
running time.

0031-9007/06,/96(3)/030201(4)$23.00

030201-1

PACS numbers: 87.19.La, 02.50.—r, 05.45.—a, 75.10.Nr

Here we present a distributed message-passing algo-
rithm of statistical physics origin which is able to store
efficiently an extensive number (p = an with a > 0) of
random patterns in binary NN characterized by a wide
range of different topologies. We consider single and mul-
tilayer networks with local connectivities of the neurons
ranging from finite to extensive. The typical computational
complexity of the algorithm is shown to scale roughly as
O(n? log(n)), that is almost linearly on the size of the input
for an extensive number of patterns. This fact together with
the parallel nature of the algorithm allows to easily find
optimal synaptic weights for systems as large as n = 10°
with « relatively close the critical value «,. above which
perfect learning is no longer possible. From the algorithmic
viewpoint, our solution to the binary learning problem
should be seen as an example of solution of constraint
satisfaction problems over dense factor graphs (a graphical
representation of combinatorial constraints used in infor-
mation theory [14,15]). As such, our results show how the
recent progress in combinatorial optimization by statistical
physics and message-passing techniques which have al-
lowed to solve efficiently famous combinatorial prob-
lems like random K-satisfiability [16] or random graph
Q-coloring [17], can be extended to other classes of prob-
lems in which constraints involve an extensive number of
variables.

The NN models that we consider are composed of
simple threshold units connected by binary weights w; , =
*1. For the sake of simplicity we consider two-layer net-
works with one output unit and with weights of the output
layer that are fixed wg,, = 1 (see Fig. 1). Each of the K
internal units is connected to ¢, inputs in either a treelike
structure or in an overlapping way. We consider NN with
connectivities ranging from finite to extensive; i.e., take
ce = O(n€) where € € [0, 1]. In order to keep extensive
the overall number of synapses we chose K « {c)~!, where
(c) is the average connectivity. Under these conditions, the
information theoretic bounds on the maximum number of
bits which can be stored in the binary synapses are com-
patible with the exact storage of an extensive number of
patterns (p = an, a > 0) [6]. The output 7, of each inter-
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FIG. 1. A nonoverlapping two-layer network with six synapses
(empty circles) and three threshold units (filled dots), and its
corresponding factor graph for four patterns (right). The factor
graph is composed of variable nodes (circles; indices i, j, o in the
text) and function nodes (squares; indices a, b in the text);
messages “travel” over the edges of the factor graph in both
directions. Note that while synaptic weights have a unique
corresponding variable node on the factor graph, each of the
two auxiliary variable computing a partial threshold (hidden
units), being pattern-dependent, must be replicated for every
pattern on the factor graph.

nal unit is just the sign of the weighted sum of its inputs ¢;
minus some threshold, 7, = sgn(¥ ;eviyw;eé&; — ¥e)
where V(£) is the set of inputs connected to unit €. The
overall output o of the network is given by o(&) =
Sgn(Zf=1 T — 70ut)'

For K = 1 and ¢ = n we recover the binary perceptron,
which is the elementary building block of many NN mod-
els. In the case of random input patterns, statistical me-
chanics and rigorous methods [4—6,11] have allowed us to
study the typical behavior of this type of systems in the
limit of large n. For instance, the storage capacity «, has
been computed for different finite values of K. Interest-
ingly enough, the general scenario for binary networks is
that while the storage capacity is indeed extensive the
geometric structure of the space of solutions in the satisfi-
able region o < «, is rather complex [18]. Optimal syn-
aptic configurations are typically far apart in Hamming
distance and coexist with an exponential number of sub-
optimal configurations in which an extensive number of
errors are made. Suboptimal states act as dynamical traps
for learning algorithms [13]. Here we first show how the
so-called belief propagation (BP) equations [14,15] (a
variant of the Bethe approximation in statistical physics)
can be applied on single problem instances, providing
useful information such as the entropy of solutions, agree-
ing with statistical physics results in the large n limit [11].
Next we modify the equations by introducing a local
reinforcement term which forces the system to polarize
to a single optimal configuration of synaptic weights,
effectively turning BP into a solver for this problem.

For simplicity let us fix a threshold value y and first
consider a perceptron with binary weights w; € {—1, 1} for
i =1,...,n. Given an input pattern &, the binary percep-
tron is an elementary device which just computes the

function f,(£) = sgn(3>;w;&; — v) € {—1, 1}. Patterns &

are then classified by this perceptron by its output into the
two preimage sets of the function f,,. Given two sets of
random patterns =. we want to find vector of synaptic
weights w such that f(E-) = *1. Consider the uniform
probability space over the set W of all optimal assign-
ments. We are interested in single marginals, that is, the
probabilities P(w; = *1) that the single synapses take a
certain binary value. Under some weak correlations as-
sumption, it is possible to write a close set of equations
for these quantities. Such BP equations provide results
which are believed to be exact in certain classes of prob-
lems defined over sparse factor graphs in which the size of
loops tends to infinity with the problem size (e.g., in low
density parity check codes [15]). In the case of problems
corresponding to highly connected factor graphs (like the
learning problem we discuss here) the validity of the BP
approach relies on an apparently stronger condition, the so-
called clustering hypothesis, in which the weak correla-
tions condition arises from the weak effective interactions
among variables. Until recently no algorithmic approach
existed that allowed us to study the properties of a given
problem instance of this type. Previous attempts in this
direction were based on iterations of the mean-field
Thouless-Anderson-Palmers (TAP) equations [19], which
turn out to diverge in most cases. Recently BP has been
used to study some densely connected problems on which
it was shown that BP equations converge while TAP equa-
tions do not, even though the fixed point of the two is the
same [20].

At variance with statistical mechanics results where the
average over the patterns and the limit n — oo are done,
here we are interested in single problem instances. Thanks
to the concentration of measure of the error-energy func-
tion, the so-called self-averaging property, we expect the
quantities estimated by the equations on single problem
instances to match the typical case as n gets large enough.
Despite the fact that the approximations behind BP become
exact only as n gets large, also at finite » the results provide
very good approximations which can be used for algorith-
mic purposes (see Fig. 2). A large n expansion of the BP
equations for the K = 1 and y = 0 network learning prob-
lem read

mi_,, = tanh(h!_,,), (1)
1 1
ul, =f(— em_y~S (ml )2), )
b \/ﬁ]; k" k—b n}; k—b
1
Rl = NG > g, 3)
b#a

where f(a, b) = ( [ exp(— %)dx)_l. At the fixed
point m;_,, represents the mean value of w; over the set of
W@ of synaptic weight configurations satisfying all pat-
terns except pattern £¢. The quantity &;_,, is referred to as a
local field that synapse i feels in absence of pattern a. The

fixed point of these equations provides the information we
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FIG. 2 (color online). BP entropy vs a for single problem
instances of size n = 3465 for K = 1, 3, 5, 7. The analytic result
for K =1 and K > 1 for n — oo are also plotted for compari-
son. The upper inset shows Q' vs ¢ of the analytical DE
prediction (dashed line) vs simulations over a system of size
10° + 1 at a = 0.6 without reinforcement (data in perfect
agreement to the prediction) and with reinforcement (y, = 0).
The bottom inset shows the fraction of errors E/n vs t for both
cases. In the latter case we can see that Q' — 0 as the solution is
reached.

are seeking for. Solving the equations by iteration proved
itself to be an efficient technique, fully distributed, which is
known as a message-passing method (the components of
the vectors u and & can be thought of as messages running
along edges of the factor graph; see Fig. 1). From the fixed
point we may compute the list of all probability marginals
P(w; = *1) together with global quantities of interest
such as the entropy (normalized logarithm of the size of
the set W). As expected from the statistical mechanics
results [11], the entropy monotonically decreases with «
and vanishes at a. ~ 0.833 for large enough n. Similar
results can be derived for multilayer networks as shown in
Fig. 2. The BP equations can be adapted in a straightfor-
ward way to networks of arbitrary topology, even if the
notation is slightly more encumbered. In general, this net-
work is formed by connecting several perceptron subunits.
The corresponding factor graph can be recovered trivially
as in Fig. 1, by just replicating every perceptron for each
pattern, and adding a set of auxiliary units to represent the
output of every perceptron subunit of the network. It will
suffice then to derive a set of slightly more general BP
equations for the perceptron which we omit for the sake of
brevity. We have studied analytically the dynamical behav-
ior of the BP algorithm in the large n limit by the so-called
density evolution (DE) technique (see, e.g., Ref. [20] for
details on DE). In the upper inset of Fig. 2 we can see the
comparison of numerical simulations of large single in-
stances with the analytical prediction of the quantity Q =
1—-L%. S, mi., at every iteration step. In the spirit of
Ref. [16], a way of using the information provided by BP is
to “decimate’ the problem. This approach is indeed fea-
sible and leads to optimal assignments. However, here we
focus on a much more efficient and fully distributed ver-

sion [21] of the algorithm. The idea is to introduce an extra
term into Egs. (1)—(3) enforcing #; = * o0 at a fixed point,
and use w; = sgn(h;) as a solution. This term is introduced
stochastically (with probability O at the first iteration and
probability 1 at #+ = o) to improve convergence. We re-
place Eq. (3) with Egs. (4) and (5):

1 0 w.pvy
h{+l — bt o+ t , 4
! \/ﬁzb &/ {hf w.p.1 — v, “)
1
hfila = hﬁ“ ——=&u! ®))

\/ﬁ i “a—it

We use y, = vy for 0 = y, = 1 (though other choices are
also possible). Choosing yy = 1 clearly gives back the
original BP set of equations, Eqs. (1)—(3). We note that a
similar inertia term yh! (constant ) was introduced in
Ref. [22], which would correspond to the average of the
one in Eq. (4). Note also that the extra term for y, = 0
corresponds to adding an external field equal to the local
field computed in the last step. Remembering that ““fixing”
a variable as in the standard decimation procedure is
equivalent to adding an external field of infinite intensity,
one can think of this procedure as a sort of smooth deci-
mation in which all variables (not only the most polarized
ones) get an external field, but the intensity is proportional
to their polarization. Numerical experiments of learning
randomly generated patterns have been carried out on
systems of various sizes (up to n = 10°), with different
choices of K and with different topologies (overlapping
and treelike). Some are reported in Fig. 3. An easy to use
version of the code is made available at «[23]. It is not hard
to think how the same algorithm could also be made
effective in the presence of faulty contacts and heteroge-
neous discrete synaptic values (which need not to be
identified a priori as the message-passing procedure, dis-
tributed over the same graph, could incorporate defects by
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FIG. 3 (color online). Learning of an pseudorandom patterns
curves for the binary perceptron for different values of y, (n =
10* + 1, 20 samples). The running time scales with y, roughly
as 1/(1 — 7). Inset: evolution of Q and E’ vs time ¢ for various
kinds of two-layer network topologies, i.e., n = 37, @ = 0.5, and
K € {39,3!,...,3%. Note that the number of errors E goes to 0
in all cases.
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modifying accordingly the messages). Even for the limit
case of continuous synapses the process converges to
optimal solutions in a wide range of «.

Experiments have been performed using an improved
version of Egs. (1)—(3): Using further linearizations like in
Ref. [20] one can obtain a new set of equations that are
equivalent to Eqs. (1)—(3) up to an error of O(n~'/?),
having two main implementation advantages: memory
requirements of just O(n) (in addition to the set of patterns
which amounts to an? bits), and needing just O(n) (slow)
hyperbolic function computations in addition to O(n?)
elementary (fast) floating point operations. BP equations
can also be simplified by approximating m;_,, by m; in
Egs. (1)—(3) (without correction terms), giving a simple
closed expression in the quantities {m!}. The resulting
equation is not asymptotically equivalent to BP anymore
[although the approximation itself has an error of O(n~'/2)
it participates in a sum of n terms], but nonetheless gives
comparable (just slightly worse) algorithmic perfor-
mances. Of particular interest are the corresponding equa-
tions for y, = 0 (full reinforcement) which take a simple
additive form if written in terms of the local fields A!:

b &
hg+1:ZZ_luf ~pTHL = pT 4 2Lyt (6)
i ﬁ b 1 1 \/ﬁ h,

't b

where u = f(3 s j—% tanhhy, 1S, . tanh?h}) and ¢ scales
as ant. By choosing at time 7 one pattern £, from the set
E, Eq. (6) implements a sequential learning protocol, still
leading to an extensive memory capacity (around @, =
.5 for the binary perceptron). The simplicity of Eq. (6)
represents a proof of concept of how highly nontrivial
learning can take place by message passing between sim-
ple devices disposed over the network itself. This fact
could shed some light on the biological treatment of infor-
mation in neural systems [24].
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