14 research outputs found

    Vestigial-like 1 is a shared targetable cancer-placenta antigen expressed by pancreatic and basal-like breast cancers.

    Get PDF
    Cytotoxic T lymphocyte (CTL)-based cancer immunotherapies have shown great promise for inducing clinical regressions by targeting tumor-associated antigens (TAA). To expand the TAA landscape of pancreatic ductal adenocarcinoma (PDAC), we performed tandem mass spectrometry analysis of HLA class I-bound peptides from 35 PDAC patient tumors. This identified a shared HLA-A*0101 restricted peptide derived from co-transcriptional activator Vestigial-like 1 (VGLL1) as a putative TAA demonstrating overexpression in multiple tumor types and low or absent expression in essential normal tissues. Here we show that VGLL1-specific CTLs expanded from the blood of a PDAC patient could recognize and kill in an antigen-specific manner a majority of HLA-A*0101 allogeneic tumor cell lines derived not only from PDAC, but also bladder, ovarian, gastric, lung, and basal-like breast cancers. Gene expression profiling reveals VGLL1 as a member of a unique group of cancer-placenta antigens (CPA) that may constitute immunotherapeutic targets for patients with multiple cancer types

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Evolution of CD8+ T Cell Receptor (TCR) Engineered Therapies for the Treatment of Cancer

    No full text
    Engineered T cell receptor T (TCR-T) cell therapy has facilitated the generation of increasingly reliable tumor antigen-specific adaptable cellular products for the treatment of human cancer. TCR-T cell therapies were initially focused on targeting shared tumor-associated peptide targets, including melanoma differentiation and cancer-testis antigens. With recent technological developments, it has become feasible to target neoantigens derived from tumor somatic mutations, which represents a highly personalized therapy, since most neoantigens are patient-specific and are rarely shared between patients. TCR-T therapies have been tested for clinical efficacy in treating solid tumors in many preclinical studies and clinical trials all over the world. However, the efficacy of TCR-T therapy for the treatment of solid tumors has been limited by a number of factors, including low TCR avidity, off-target toxicities, and target antigen loss leading to tumor escape. In this review, we discuss the process of deriving tumor antigen-specific TCRs, including the identification of appropriate tumor antigen targets, expansion of antigen-specific T cells, and TCR cloning and validation, including techniques and tools for TCR-T cell vector construction and expression. We highlight the achievements of recent clinical trials of engineered TCR-T cell therapies and discuss the current challenges and potential solutions for improving their safety and efficacy, insights that may help guide future TCR-T studies in cancer

    Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy

    No full text
    Abstract Background Corticosteroids are routinely utilized to alleviate edema in patients with intracranial lesions and are first-line agents to combat immune-related adverse events (irAEs) that arise with immune checkpoint blockade treatment. However, it is not known if or when corticosteroids can be administered without abrogating the efforts of immunotherapy. The purpose of this study was to evaluate the impact of dexamethasone on lymphocyte activation and proliferation during checkpoint blockade to provide guidance for corticosteroid use while immunotherapy is being implemented as a cancer treatment. Methods Lymphocyte proliferation, differentiation, and cytokine production were evaluated during dexamethasone exposure. Human T cells were stimulated through CD3 ligation and co-stimulated either directly by CD28 ligation or by providing CD80, a shared ligand for CD28 and CTLA-4. CTLA-4 signaling was inhibited by antibody blockade using ipilimumab which has been approved for the treatment of several solid tumors. The in vivo effects of dexamethasone during checkpoint blockade were evaluated using the GL261 syngeneic mouse intracranial model, and immune populations were profiled by flow cytometry. Results Dexamethasone upregulated CTLA-4 mRNA and protein in CD4 and CD8 T cells and blocked CD28-mediated cell cycle entry and differentiation. Naïve T cells were most sensitive, leading to a decrease of the development of more differentiated subsets. Resistance to dexamethasone was conferred by blocking CTLA-4 or providing strong CD28 co-stimulation prior to dexamethasone exposure. CTLA-4 blockade increased IFNγ expression, but not IL-2, in stimulated human peripheral blood T cells exposed to dexamethasone. Finally, we found that CTLA-4 blockade partially rescued T cell numbers in mice bearing intracranial gliomas. CTLA-4 blockade was associated with increased IFNγ-producing tumor-infiltrating T cells and extended survival of dexamethasone-treated mice. Conclusions Dexamethasone-mediated T cell suppression diminishes naïve T cell proliferation and differentiation by attenuating the CD28 co-stimulatory pathway. However, CTLA-4, but not PD-1 blockade can partially prevent some of the inhibitory effects of dexamethasone on the immune response

    Additional file 1: of Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy

    No full text
    Figure S1. T cell stimulated with αCD3/αCD28 microbeads proliferate in the presence of dexamethasone.Healthy donor T cells were cultured for four days with the indicated ratio of αCD3/αCD28 microbeads:total T cells in the presence of vehicle or dexamethasone. A, Representative flow cytometry plots of CellTrace violet dilution. Plots were derived from gated CD4 (top row) or CD8 (bottom row) T cells. B-D, Proliferation analyses of CD4 T cells (top) and CD8 T cells (bottom) performed on the samples shown in (A). Precursor Frequency (B), Expansion Index (C), and Proliferation Index (D) are shown. Samples were plated in duplicate and analyzed with an unpaired students T test. Data are representative of three independent experiments. (PDF 3563 kb

    Additional file 3: of Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy

    No full text
    Figure S3. T cell differentiation subsets formed during in vitro stimulation with ιCD3/CD80 stimulation. Negatively-selected healthy donor T cells were cultured with 5 Οg/mL ιCD3 and the indicated concentration of CD80. T cell differentiation subsets were quantified following four days of culture. A, Flow plot of gating strategy to identify the indicated T cell differentiation subsets. B, Flow plots of CD4 (top) and CD8 (bottom) T cells cultured under the indicated conditions. (PDF 3995 kb

    Additional file 5: of Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy

    No full text
    Figure S5 PD-1 blockade does not rescue dexamethasone-mediated proliferation defects. A, Flow cytometry analysis of PD-1 surface expression on CD4 (left) or CD8 (right) T cells stimulated with αCD3/αCD28 microbeads. Unstimulated (dashed line), stimulated in presence of vehicle (solid line), and stimulated in presence of dexamethasone (filled red line) are shown. B, Geometric median fluorescence intensity (gMFI) of PD-1 staining on CD4 or CD8 T cells. Cells cultured with vehicle (black bars) and dexamethasone (red bars) are shown. Data are an average of duplicate samples. C, Expression of PD-1 by qPCR of T cells stimulated in the presence of vehicle or dexamethasone. Data are representative of four independent experiments. D-E. Healthy donor T cells were stimulated for four days in the presence of vehicle or dexamethasone and nivolumab or ipilimumab F(ab’)2 antibody as indicated. Precursor frequency of CD4 and CD8 T cells was quantified by FlowJo. The ratio of dexamethasone to vehicle for CD4 (C) and CD8 (D) T cells is shown. All samples were plated in duplicate and the ratios were analyzed with a one-way ANOVA. Data are representative of n = 4 healthy donors. (PDF 2522 kb

    Additional file 7: of Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy

    No full text
    Figure S7. Quantification of Treg and checkpoint molecules in tumor-bearing mice. GL261 ffluc-mCherry tumor-bearing mice were randomized into the indicated cohorts based on bioluminescence values from tumor. Vehicle or dexamethasone treatment was initiated on day 7, and isotype or CTLA-4 blocking antibody were administered on days 13, 16, and 19 following tumor implantation. Mice were euthanized on day 23 and tissues were harvested for flow cytometry analysis. A, Treg cell number from tumor-bearing brain hemisphere (left; n = 8) or the cervical tumor-draining lymph nodes (right; n = 10). B, The percentage of CD4 (top two plots) or CD8 (bottom two plots) T cells expressing the indicated checkpoint molecules. Co-expression of molecules was quantified using a Boolean gating strategy. Data were analyzed using a unpaired students T test. (PDF 1891 kb

    Additional file 4: of Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy

    No full text
    Figure S4. Increased co-stimulation ameliorates the inhibitory effects of dexamethasone. Negatively-selected healthy donor T cells were cultured with 5 μg/mL αCD3 and increasing concentrations of CD80 in the presence of vehicle or dexamethasone. A-B. CD8 T cells cultured with vehicle (A) or dexamethasone (B). Flow cytometry plots showing proliferation of cells cultured with the indicated concentration of CD80 (left) and total numbers of naïve (TN), central memory (TCM), effector memory (TEM), and terminal effector (TTE) T cells following four days of culture (right) are shown. Differentiation subsets were assessed by CD45RO and CCR7 staining. Each condition was plated in duplicate, and data are representative of three independent experiments. Data were analyzed with an unpaired, two-tailed T Test. (PDF 2573 kb

    Prospective observational cohort study on grading the severity of postoperative complications in global surgery research

    Get PDF
    Background The Clavien–Dindo classification is perhaps the most widely used approach for reporting postoperative complications in clinical trials. This system classifies complication severity by the treatment provided. However, it is unclear whether the Clavien–Dindo system can be used internationally in studies across differing healthcare systems in high- (HICs) and low- and middle-income countries (LMICs). Methods This was a secondary analysis of the International Surgical Outcomes Study (ISOS), a prospective observational cohort study of elective surgery in adults. Data collection occurred over a 7-day period. Severity of complications was graded using Clavien–Dindo and the simpler ISOS grading (mild, moderate or severe, based on guided investigator judgement). Severity grading was compared using the intraclass correlation coefficient (ICC). Data are presented as frequencies and ICC values (with 95 per cent c.i.). The analysis was stratified by income status of the country, comparing HICs with LMICs. Results A total of 44 814 patients were recruited from 474 hospitals in 27 countries (19 HICs and 8 LMICs). Some 7508 patients (16·8 per cent) experienced at least one postoperative complication, equivalent to 11 664 complications in total. Using the ISOS classification, 5504 of 11 664 complications (47·2 per cent) were graded as mild, 4244 (36·4 per cent) as moderate and 1916 (16·4 per cent) as severe. Using Clavien–Dindo, 6781 of 11 664 complications (58·1 per cent) were graded as I or II, 1740 (14·9 per cent) as III, 2408 (20·6 per cent) as IV and 735 (6·3 per cent) as V. Agreement between classification systems was poor overall (ICC 0·41, 95 per cent c.i. 0·20 to 0·55), and in LMICs (ICC 0·23, 0·05 to 0·38) and HICs (ICC 0·46, 0·25 to 0·59). Conclusion Caution is recommended when using a treatment approach to grade complications in global surgery studies, as this may introduce bias unintentionally
    corecore