165 research outputs found

    Synthetic hydroxyapatite inhibits bisphosphonate toxicity to the oral mucosa in vitro

    Get PDF
    Medication-related osteonecrosis of the jaw (MRONJ) is a side effect of bisphosphonate therapy, characterised by exposed necrotic bone. The soft tissues of the oral mucosa no longer provide a protective barrier and MRONJ patients experience pain, infections and difficulties eating. We hypothesised that hydroxyapatite (Ca5(PO4)3(OH)) could reduce bisphosphonate concentrations and protect the oral mucosa by exploiting bisphosphonate’s calcium binding affinity. The effect of zoledronic acid (ZA) and pamidronic acid (PA) on the metabolism of oral fibroblasts, oral keratinocytes and three-dimensional oral mucosa models was investigated and then repeated in the presence of hydroxyapatite granules. Without hydroxyapatite, ZA and PA significantly reduced the metabolic activity of oral cells in a dose-dependent manner. Both drugs reduced epithelial thickness and 30 µM ZA resulted in loss of the epithelium. Hydroxyapatite granules had a protective effect on oral cells, with metabolic activity retained. Oral mucosa models retained their multi-layered epithelium when treated with ZA in the presence of hydroxyapatite granules and metabolic activity was comparable to controls. These results demonstrate hydroxyapatite granules protected oral soft tissues from damage caused by bisphosphonate exposure. Porous hydroxyapatite granules are currently used for socket preservation and this data suggests their potential to prevent MRONJ in at-risk patients

    Do Multi-Paddock Systems Increase Evenness of Grazing at the Paddock Scale?

    Get PDF
    There is ongoing debate about the benefits of multi-paddock rotationally grazed systems compared to continuous grazing (Briske et al. 2008). One of the purported benefits of high density short duration grazing is more spatially uniform defoliation. A commercial-scale trial in northern Australia (Hunt et al. 2013) compared continuously grazed paddocks to cell grazed and wet season spelled systems in newly developed paddocks. This paper reports the effect of grazing system on defoliation with distance to water through time

    The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds

    Get PDF
    Novel, porous, biodegradable biomaterials which support tissue integration and angiogenesis and which have elastomeric properties are needed to repair and replace soft tissues in dynamic environments. In this study poly(glycerol sebacate urethane) (PGSU) scaffolds with different porous structures were fabricated using freeze-drying by varying the polymer concentration of the freeze-drying solution, during which the polymer was further crosslinked. The effect of the porous structure on the physical properties, cell proliferation, tissue ingrowth and angiogenic properties was investigated. By increasing the polymer concentration in the freeze-drying solution from 5 w/v% to 10 w/v% and 15 w/v%, the porosity and pore size of the scaffold decreased, resulting in porosities ranging between 88 – 96% and pore sizes 6.4–28.2 μm. The mechanical properties increased with the polymer concentration, with ultimate tensile strength and Young's modulus between 0.05 – 0.86 MPa and 0.05–0.65 MPa respectively and negligible loss of tensile strength after 100 cycles of loading. Enzymatic degradation over 28 days demonstrated linear degradation kinetics with mass loss between 19.1 – 52.3%. All PGSU scaffolds provided a viable environment for cell attachment, in which cell metabolic activity increased over time indicating cell proliferation. The cells adhered to PGSU scaffolds produced and deposited high quantities of collagen, reaching 7.5% of the sample's dry mass after 14 days culture for the scaffold with the highest porosity. Additionally, the scaffolds with the polymer concentration of 5 w/v% implanted onto the chick chorioallantoic membrane supported rapid tissue ingrowth and new blood vessel formation within the porous scaffold. These results demonstrate that PGSU scaffolds have potential for use in many areas of soft tissue engineering

    Fabrication of hierarchical multilayer poly(glycerol sebacate urethane) scaffolds based on ice-templating

    Get PDF
    In this study, it was demonstrated that ice-templating via freeze drying with custom-made moulds, in combination with air brushing, allows for the fabrication of poly(glycerol sebacate urethane) (PGSU) scaffolds with hierarchical multilayer microstructures to replicate various native soft tissues. The PGSU scaffolds were either monolayered but exhibited an anisotropic microstructure, or bilayered and trilayered, with each layer showing different microstructures. By using freeze drying with custom-made moulds, the ice crystals of the solvent were grown unidirectionally, and after freeze-drying, the scaffolds had an anisotropic microstructure, mimicking tissues such as tendon and skeletal muscle. The anisotropic PGSU scaffolds were also examined for their tensile strength, and a range of mechanical properties were obtained by altering the reactants’ molar ratio and polymer concentration. This is of importance, since soft tissues exhibit different mechanical properties depending on their native location and functionality. By combining freeze drying with airbrushing, scaffolds were fabricated with a thin, non-porous layer on top of the porous layers to allow three-dimensional cell co-culture for tissues such as skin and oral mucosa. These results show that fabrication techniques can be combined to produce PGSU scaffolds with tailored hierarchical microstructures and mechanical properties for multiple tissue engineering applications

    Use of a Rho kinase inhibitor to increase human tonsil keratinocyte longevity for three-dimensional, tissue engineered tonsil epithelium equivalents

    Get PDF
    The generation of tissue-engineered epithelial models is often hampered by the limited proliferative capacity of primary epithelial cells. This study aimed to isolate normal tonsillar keratinocytes (NTK) from human tonsils, increase the lifespan of these cells using the Rho kinase inhibitor Y-27632 and to develop tissue-engineered equivalents of healthy and infected tonsil epithelium. The proliferation rate of isolated NTK and expression of c-MYC and p16INK4A were measured in the absence or presence of the inhibitor. Y-27632-treated NTK were used to generate tissue-engineered tonsil epithelium equivalents using de-epithelialized dermis that were then incubated with Streptococcus pyogenes to model bacterial tonsillitis, and the expression of pro-inflammatory cytokines was measured by cytokine array and ELISA. NTK cultured in the absence of Y-27632 rapidly senesced whereas cells cultured in the presence of this inhibitor proliferated for over 30 population doublings without changing their phenotype. Y-27632-treated NTK produced a multi-layered differentiated epithelium that histologically resembled normal tonsillar surface epithelium and responded to S. pyogenes infection by increased expression of pro-inflammatory cytokines including CXCL5 and IL-6. NTK can be isolated and successfully cultured in vitro with Y-27632 leading to a markedly prolonged lifespan without any deleterious consequences to the cell morphology. This functional tissue-engineered equivalent of tonsil epithelium will provide a valuable tool for studying tonsil biology and host-pathogen interactions in a more physiologically relevant manner

    Fucoidan Inhibition of Osteosarcoma Cells Is Species and Molecular Weight Dependent.

    Get PDF
    Fucoidan is a brown algae-derived polysaccharide having several biomedical applications. This study simultaneously compares the anti-cancer activities of crude fucoidans from Fucus vesiculosus and Sargassum filipendula, and effects of low (LMW, 10-50 kDa), medium (MMW, 50-100 kDa) and high (HMW, >100 kDa) molecular weight fractions of S. filipendula fucoidan against osteosarcoma cells. Glucose, fucose and acid levels were lower and sulphation was higher in F. vesiculosus crude fucoidan compared to S. filipendula crude fucoidan. MMW had the highest levels of sugars, acids and sulphation among molecular weight fractions. There was a dose-dependent drop in focal adhesion formation and proliferation of cells for all fucoidan-types, but F. vesiculosus fucoidan and HMW had the strongest effects. G1-phase arrest was induced by F. vesiculosus fucoidan, MMW and HMW, however F. vesiculosus fucoidan treatment also caused accumulation in the sub-G1-phase. Mitochondrial damage occurred for all fucoidan-types, however F. vesiculosus fucoidan led to mitochondrial fragmentation. Annexin V/PI, TUNEL and cytochrome c staining confirmed stress-induced apoptosis-like cell death for F. vesiculosus fucoidan and features of stress-induced necrosis-like cell death for S. filipendula fucoidans. There was also variation in penetrability of different fucoidans inside the cell. These differences in anti-cancer activity of fucoidans are applicable for osteosarcoma treatment

    A novel characterisation approach to reveal the mechano–chemical effects of oxidation and dynamic distension on polypropylene surgical mesh

    Get PDF
    Polypropylene (PP) surgical mesh, used successfully for the surgical repair of abdominal hernias, is associated with serious clinical complications when used in the pelvic floor for repair of stress urinary incontinence or support of pelvic organ prolapse. While manufacturers claim that the material is inert and non-degradable, there is a growing body of evidence that asserts PP fibres are subject to oxidative damage and indeed explanted material from patients suffering with clinical complications has shown some evidence of fibre cracking and oxidation. It has been proposed that a pathological cellular response to the surgical mesh contributes to the medical complications; however, the mechanisms that trigger the specific host response against the material are not well understood. Specifically, this study was constructed to investigate the mechano–chemical effects of oxidation and dynamic distension on polypropylene surgical mesh. To do this we used a novel advanced spectroscopical characterisation technique, secondary electron hyperspectral imaging (SEHI), which is based on the collection of secondary electron emission spectra in a scanning electron microscope (SEM) to reveal mechanical–chemical reactions within PP meshes

    Exploring the dynamics of compliance with community penalties

    Get PDF
    In this paper, we examine how compliance with community penalties has been theorized hitherto and seek to develop a new dynamic model of compliance with community penalties. This new model is developed by exploring some of the interfaces between existing criminological and socio-legal work on compliance. The first part of the paper examines the possible definitions and dimensions of compliance with community supervision. Secondly, we examine existing work on explanations of compliance with community penalties, supplementing this by drawing on recent socio-legal scholarship on private individuals’ compliance with tax regimes. In the third part of the paper, we propose a dynamic model of compliance, based on the integration of these two related analyses. Finally, we consider some of the implications of our model for policy and practice concerning community penalties, suggesting the need to move beyond approaches which, we argue, suffer from compliance myopia; that is, a short-sighted and narrowly focused view of the issues

    Strong population structure deduced from genetics, otolith chemistry and parasite abundances explains vulnerability to localized fishery collapse in a large Sciaenid fish, Protonibea diacanthus

    Get PDF
    As pressure on coastal marine resources is increasing globally, the need to quantitatively assess vulnerable fish stocks is crucial in order to avoid the ecological consequences of stock depletions. Species of Sciaenidae (croakers, drums) are important components of tropical and temperate fisheries and are especially vulnerable to exploitation. The black-spotted croaker, Protonibea diacanthus, is the only large sciaenid in coastal waters of northern Australia where it is targeted by commercial, recreational and indigenous fishers due to its food value and predictable aggregating behaviour. Localised declines in the abundance of this species have been observed, highlighting the urgent requirement by managers for information on fine and broad-scale population connectivity. This study examined the population structure of P. diacanthus across northwestern Australia using three complementary methods: genetic variation in microsatellite markers, otolith elemental composition and parasite assemblage composition. The genetic analyses demonstrated that there were at least five genetically distinct populations across the study region, with gene flow most likely restricted by inshore biogeographic barriers such as the Dampier Peninsula. The otolith chemistry and parasite analyses also revealed strong spatial variation among locations within broad-scale regions, suggesting fine-scale location fidelity within the lifetimes of individual fish. The complementarity of the three techniques elucidated patterns of connectivity over a range of spatial and temporal scales. We conclude that fisheries stock assessments and management are required at fine scales (100's km) to account for the restricted exchange among populations (stocks) and to prevent localised extirpations of this species. Realistic management arrangements may involve the successive closure and opening of fishing areas to reduce fishing pressure
    corecore