173 research outputs found

    Network size, structure and mutualism dependence affect the propensity for plant-pollinator extinction cascades

    Get PDF
    1. Pollinator network structure arising from the extent and strength of interspecific mutualistic interactions can promote species persistence and community robustness. However, environmental change may re-organise network structure limiting capacity to absorb or resist shocks and increasing species extinctions. 2. We investigated if habitat disturbance and the level of mutualism dependence between species affected the robustness of insect–flower visitation networks Following a recently developed Stochastic Co-extinction Model (SCM), we ran simulations to produce the number of extinction episodes (cascade degree), which we correlated with network structure in undisturbed and disturbed habitat. We also explicitly modelled whether a species’ intrinsic dependence on mutualism affected the propensity for extinction cascades in the network. 3. Habitat disturbance generated a gradient in network structure with those from disturbed sites being less connected, but more speciose and so larger. Controlling for network size (z-score standardisation against the null model) revealed that disturbed networks had disproportionately low linkage density, high specialisation, fewer insect visitors per plant species (vulnerability) and lower nestedness (NODF). 4. This network structure gradient driven by disturbance increased and decreased different aspects of robustness to simulated plant extinction. Disturbance decreased the risk that an initial insect extinction would follow a plant species loss. Although, this effect disappeared when network size and connectance were standardised, suggesting the lower connectance of disturbed networks increased robustness to an initial secondary extinction. 5. However, if a secondary extinction occurred then networks from disturbed habitat were more prone to large co-extinction cascades, likely resulting from a greater chance of extinction in these larger, speciose networks. Conversely, when species mutualism dependency was explicit in the SCM simulations the disturbed networks were disproportionately more robust to very large co-extinction cascades, potentially caused by non-random patterns of interaction between species differing in dependence on mutualism. 6. Our results showed disturbance altered the size and the distribution of interspecific interactions in the networks to affect their robustness to co-extinction cascades. Controlling for effects due to network size and the interspecific variation in demographic dependence on mutualism can improve insight into properties conferring the structural robustness of networks to environmental changes

    An investigation of polymorphisms in the 17q11.2-12 CC chemokine gene cluster for association with multiple sclerosis in Australians

    Get PDF
    BACKGROUND: Multiple sclerosis (MS) is a disorder of the central nervous system (CNS) characterised by inflammation and neuronal degeneration. It is believed to result from the complex interaction of a number of genes, each with modest effect. Chemokines are vital to the migration of cells to sites of inflammation, including the CNS, and many are implicated in MS pathogenesis. Most of the CC chemokine genes are encoded in a cluster on chromosome 17q11.2-12, which has been identified in a number of genome wide screens as being potentially associated with MS. METHODS: We conducted a two-stage analysis to investigate the chemokine gene cluster for association with MS. After sequencing the chemokine genes in several DNA pools to identify common polymorphisms, 12 candidate single-nucleotide polymorphisms (SNPs) were genotyped in a cohort of Australian MS trio families. RESULTS: Marginally significant (uncorrected) transmission distortion was identified for four of the SNPs after stratification for several factors. We also identified marginally significant (uncorrected) transmission distortion for haplotypes encompassing the CCL2 and CCL11 genes, using two independent cohorts, which was consistent with recent reports from another group. CONCLUSION: Our results implicate several chemokines as possibly being associated with MS susceptibility, and given that chemokines and their receptors are suitable targets for therapeutic agents, further investigation is warranted in this region

    Borane catalysed cyclopropenation of arylacetylenes

    Get PDF
    Triarylboranes have gained substantial attention as catalysts for C–C bond forming reactions due to their remarkable catalytic activities. Herein, we report B(C6F5)3 catalysed cyclopropenation of a wide variety of arylacetylenes using donor–acceptor diazoesters. A mild reaction protocol has been developed for the synthesis of functionalised cyclopropenes (33 examples) in good to excellent yields

    Wildlife-friendly farming benefits rare birds, bees and plants

    Get PDF
    Agricultural intensification is a leading cause of global biodiversity loss, especially for threatened and near-threatened species. One widely implemented response is ‘wildlife-friendly farming’, involving the close integration of conservation and extensive farming practices within agricultural landscapes. However, the putative benefits from this controversial policy are currently either unknown or thought unlikely to extend to rare and declining species. Here, we show that new, evidence-based approaches to habitat creation on intensively managed farmland in England can achieve large increases in plant, bee and bird species. In particular, we found that habitat enhancement methods designed to provide the requirements of sensitive target biota consistently increased the richness and abundance of both rare and common species, with 10-fold to greater than 100-fold more rare species per sample area than generalized conventional conservation measures. Furthermore, targeting landscapes of high species richness amplified beneficial effects on the least mobile taxa: plants and bees. Our results provide the first unequivocal support for a national wildlife-friendly farming policy and suggest that this approach should be implemented much more extensively to address global biodiversity loss. However, to be effective, these conservation measures must be evidence-based, and developed using sound knowledge of the ecological requirements of key species

    National patterns of functional diversity and redundancy in predatory ground beetles and bees associated with key UK arable crops

    Get PDF
    1. Invertebrates supporting natural pest control and pollination ecosystem services are crucial to world-wide crop production. Understanding national patterns in the spatial structure of natural pest control and pollination can be used to promote effective crop management and contribute to long-term food security. 2. We mapped the species richness and functional diversity of ground beetles and bees to provide surrogate measures of natural pest control and pollination for Great Britain. Func- tional diversity represents the value and range of morphological and behavioural traits that support ecosystem services. We modelled the rate at which functional diversity collapsed in response to species extinctions to provide an index of functional redundancy. 3. Deficits in functional diversity for both pest control and pollination were found in areas of high arable crop production. Ground beetle functional redundancy was positively corre- lated with the landscape cover of semi-natural habitats where extinctions were ordered by body size and dispersal ability. For bees, functional redundancy showed a weak positive cor- relation with semi-natural habitat cover where species extinctions were ordered by feeding specialization. 4. Synthesis and applications. Increasingly, evidence suggests that functionally diverse assem- blages of ground beetles and bees may be a key element to strategies that aim to support pol- lination and natural pest control in crops. If deficits in both functional diversity and redundancy in areas of high crop production are to be reversed, then targeted implementation of agri-environment schemes that establish semi-natural habitat may provide a policy mecha- nism for supporting these ecosystem services

    The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens

    Get PDF
    Sclerotinia sclerotiorum is a phytopathogenic fungus with over 400 hosts including numerous economically important cultivated species. This contrasts many economically destructive pathogens that only exhibit a single or very few hosts. Many plant pathogens exhibit a “two-speed” genome. So described because their genomes contain alternating gene rich, repeat sparse and gene poor, repeat-rich regions. In fungi, the repeat-rich regions may be subjected to a process termed repeat-induced point mutation (RIP). Both repeat activity and RIP are thought to play a significant role in evolution of secreted virulence proteins, termed effectors. We present a complete genome sequence of S. sclerotiorum generated using Single Molecule Real-Time Sequencing technology with highly accurate annotations produced using an extensive RNA sequencing data set. We identified 70 effector candidates and have highlighted their in planta expression profiles. Furthermore, we characterized the genome architecture of S. sclerotiorum in comparison to plant pathogens that exhibit “two-speed” genomes. We show that there is a significant association between positions of secreted proteins and regions with a high RIP index in S. sclerotiorum but we did not detect a correlation between secreted protein proportion and GC content. Neither did we detect a negative correlation between CDS content and secreted protein proportion across the S. sclerotiorum genome. We conclude that S. sclerotiorum exhibits subtle signatures of enhanced mutation of secreted proteins in specific genomic compartments as a result of transposition and RIP activity. However, these signatures are not observable at the whole-genome scale

    Comparative toxicity of pesticides and environmental contaminants in bees: are honey bees a useful proxy for wild bee species?

    Get PDF
    Threats to wild and managed insect pollinators in Europe are cause for both ecological and socio-economic concern. Multiple anthropogenic pressures may be exacerbating pollinator declines. One key pressure is exposure to chemicals including pesticides and other contaminants. Historically the honey bee (Apis mellifera spp.) has been used as an ‘indicator’ species for ‘standard’ ecotoxicological testing but it has been suggested that it is not always a good proxy for other types of eusocial and solitary bees because of species differences in autecology and sensitivity to various stressors. We developed a common toxicity test system to conduct acute and chronic exposures of up to 240 h of similar doses of seven chemicals, targeting different metabolic pathways, on three bee species (Apis mellifera spp., Bombus terrestris and Osmia bicornis). We compared the relative sensitivity between species in terms of potency between the chemicals and the influence of exposure time on toxicity. While there were significant interspecific differences that varied through time, overall the magnitude of these differences (in terms of treatment effect ratios) was generally comparable ( 25 fold within test). These are rarely considered in standard regulatory testing but may have severe environmental consequences, especially when coupled with the likelihood of differential species exposures in the wild. These insights indicate that further work is required to understand how differences in toxicokinetics vary between species and mixtures of chemicals

    Comparing bee species responses to chemical mixtures: common response patterns?

    Get PDF
    Pollinators in agricultural landscapes can be exposed to mixtures of pesticides and environmental pollutants. Existing mixture toxicity modelling approaches, such as the models of concentration addition and independent action and the mechanistic DEBtox framework have been previously shown as valuable tools for understanding and ultimately predicting joint toxicity. Here we apply these mixture models to investigate the potential to interpret the effects of semi-chronic binary mixture exposure for three bee species: Apis mellifera, Bombus terrestris and Osmia bicornis within potentiation and mixture toxicity experiments. In the potentiation studies, the effect of the insecticide dimethoate with added propiconazole fungicide and neonicotinoid insecticide clothianidin with added tau-fluvalinate pyrethroid acaricide showed no difference in toxicity compared to the single chemical alone. Clothianidin toxicity showed a small scale, but temporally conserved increase in exposure conducted in the presence of propiconazole, particularly for B. terrestris and O. bicornis, the latter showing a near three-fold increase in clothianidin toxicity in the presence of propiconazole. In the mixture toxicity studies, the dominant response patterns were of additivity, however, binary mixtures of clothianidin and dimethoate in A. mellifera, B. terrestris and male O. bicornis there was evidence of a predominant antagonistic interaction. Given the ubiquitous nature of exposures to multiple chemicals, there is an urgent need to consider mixture effects in pollinator risk assessments. Our analyses suggest that current models, particularly those that utilise time-series data, such as DEBtox, can be used to identify additivity as the dominant response pattern and also those examples of interactions, even when small-scale, that may need to be taken into account during risk assessment
    • 

    corecore