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Abstract

Pollinators in agricultural landscapes can be exposed to mixtures of pesticides and environ-

mental pollutants. Existing mixture toxicity modelling approaches, such as the models of

concentration addition and independent action and the mechanistic DEBtox framework

have been previously shown as valuable tools for understanding and ultimately predicting

joint toxicity. Here we apply these mixture models to investigate the potential to interpret the

effects of semi-chronic binary mixture exposure for three bee species: Apis mellifera, Bom-

bus terrestris and Osmia bicornis within potentiation and mixture toxicity experiments. In the

potentiation studies, the effect of the insecticide dimethoate with added propiconazole fungi-

cide and neonicotinoid insecticide clothianidin with added tau-fluvalinate pyrethroid acari-

cide showed no difference in toxicity compared to the single chemical alone. Clothianidin

toxicity showed a small scale, but temporally conserved increase in exposure conducted in

the presence of propiconazole, particularly for B. terrestris and O. bicornis, the latter show-

ing a near three-fold increase in clothianidin toxicity in the presence of propiconazole. In the

mixture toxicity studies, the dominant response patterns were of additivity, however, binary

mixtures of clothianidin and dimethoate in A. mellifera, B. terrestris and male O. bicornis

there was evidence of a predominant antagonistic interaction. Given the ubiquitous nature

of exposures to multiple chemicals, there is an urgent need to consider mixture effects in

pollinator risk assessments. Our analyses suggest that current models, particularly those

that utilise time-series data, such as DEBtox, can be used to identify additivity as the domi-

nant response pattern and also those examples of interactions, even when small-scale, that

may need to be taken into account during risk assessment.

Introduction

Widespread agrochemical use and pollution means that foraging bees can be exposed to con-

taminants singly, sequentially or in a range of combinations [1–3]. Major reviews of the effects

of mixtures across a range of species and chemical combinations have suggested that the domi-

nant response pattern in mixture exposures is one of joint effects within a factor of two fold of
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additive predictions for the majority (approximately 80%) of cases [4, 5]. Even though additive

is by far the most commonly reported pattern of mixture response, there are nonetheless

existing reports of synergism (i.e. joint toxicity higher than expected based on the default

assumption of additivity) and antagonism (joint toxicity lower than expected in relation to

assumptions of additivity) chemical mixtures. Among bee species, examples of interactive

effects seen include large-magnitude synergisms between tau-fluvalinate (a pyrethroid used

for Varroa destructor mite control) and different sterol biosynthesis inhibiting fungicides [6];

synergisms between tau-fluvalinate and the organophosphate coumaphos, both used for in

hive V. destructor control [7] and synergisms between neonicotinoids and ergosterol biosyn-

thesis inhibiting fungicides, particularly for cyano-substituted compounds such as thiacloprid

and acetamiprid [8]. In all cases, the underlying mechanism of the interaction was associated

with inhibition by one compound of the active sites of detoxifying cytochrome P450 enzymes

that thereby inhibited the metabolism of the second compound. Further smaller scale syner-

gism (<3 fold maximum magnitude) have also been shown for combinations of neonicoti-

noids and sterol biosynthesis inhibiting fungicides [9], and for a range of pesticides used in

orchards again with sterol biosynthesis inhibiting fungicides [10].

With mixture exposures so ubiquitous in nature, and interactive effects between chemicals

previously observed, a number of approaches will be needed to support mixture hazard and

risk assessment in bees [11]. The two most established “reference” models for mixture effects

are concentration addition (CA) for similarly acting chemicals and independent action (IA) for

dissimilarly acting chemicals [12, 13]. These two mathematical concepts can be used within the

context of conventional concentration-response analysis. While applicable for many mixtures,

there are chemical combinations for which these two reference models may fail to fully describe

joint effects due to non-additive interactions [4, 14]. The “MIXTOX” approach of Jonker et al.

[15] has been widely used to identify such synergistic, antagonistic, dose ratio and dose level

interactions that lead to deviations of effect from CA or IA predictions for single time-points

[16]. The Dynamic Energy Budget (DEB) theory approach uses a mechanistic based model for

mixture toxicity assessment. DEBtox models integrate the time course of effect data within one

consistent framework. This allows joint effects to be interpreted in a toxicokinetic and toxicody-

namic framework for each single chemical independently. Inclusion of an interaction parame-

ter can, further, allow for the detection of consistent interactions in mixture exposures [17–19].

As there is a clear need for mixture assessment for pollinators, we here examine the joint

effects of binary mixtures of pesticides, and among pesticides and environmental contaminants

using MIXTOX and DEBtox approaches for data interpretation. The aim of the work was to

investigate a series of binary mixtures to identify examples of additive and interactive joint

effects within two different data analysis frameworks across both bee species and exposure

times. Bioassays were conducted with combinations of insecticides from different classes, fun-

gicides and also environmental contaminants initially in the European honeybee Apis mellifera.

The patterns of joint effect observed in this species were then compared with those for the

bumblebee Bombus terrestris and solitary bee Osmia bicornis to assess if the patterns of joint

effect seen in A. mellifera were repeated in other bee species This analysis identified the patterns

of joint effects across a series of relevant mixtures and species as an indication of the value and

uncertainty associated with the application of available mixture tools for assessing risks to bees.

Materials and methods

Chemical selection

Six binary mixture combinations were tested. Each represented a chemical pair to which bees

could plausibly be jointly exposed, either via direct contact, oral consumption of contaminated
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resources (nectar, pollen, guttation water) or through indirect contact with contaminated nest

mates, comb or food stores. Different mechanistic categories including similar and dissimilar

combinations were also tested. All six mixtures were tested for Apis mellifera, with three com-

binations also tested in Bombus terrestris and Osmia bicornis (see summary Table 1) for which

clear concentration response curves were already available [20, 21]. Mixtures tested included

both cases where the two chemicals had an effect on the same physiological effect (e.g. on

nerve function for the insecticides), even if action was not mediated by the same molecular ini-

tiating event (e.g. acetylcholinesterase binding for dimethoate, nicotinic receptor binding for

clothianidin, sodium channel binding for tau-fluvalinate) as well as combinations with differ-

ent modes of action. Organic chemicals are known to be metabolised in bees by the cyto-

chrome P450 system [7, 22, 23]. Since previous studies have identified that sterol inhibiting

fungicides can inhibit such metabolism leading to interactive toxicity [6, 8, 24], a sterol biosyn-

thesis inhibiting fungicide (propiconazole) was included in some mixtures with insecticides.

Environmental contaminants are known to affect epigenetic regulation (arsenic) and to sup-

press metabolic rate (cadmium). The modes of action of these two trace elements represent

commonly observed effects for other metals and even organic contaminants. Hence their

inclusion extend the range of combinations assessed to include mixtures with clearly differing

mechanisms. All chemicals were purchased as high grade technical reagents. Stock solutions

for dosing to the sucrose solution food source were prepared by dissolving chemicals in either

MilliQ water (clothianidin, dimethoate, Cd, As) or acetone (tau-fluvalinate, propiconazole).

Overall experimental designs

The experimental designs used were consistent among species, with the overall choice of

design based on whether previous studies (e.g. [20, 21]) showed one or both chemicals to have

an effect on survival at the tested concentrations. Controls containing only 50% w/v sucrose

were included in all experiments. Further, for some chemicals (tau-fluvalinate, propiconazole)

spiking of the sucrose solution with the required chemical concentration had to be conducted

using acetone as a solvent carrier due to their low water solubility. When this was the case ace-

tone concentrations were kept to a minimum (<1% acetone in the sucrose solution) and addi-

tional acetone controls were included in the overall experiment. All treatments used in the

experiments were spiked such that each contained the same amount of acetone as used to

spike the highest tested concentration. A treatment containing an estimated 96 h LC50 of

dimethoate for A. mellifera and B. terrestris and a 48 h LC50 for O. bicornis were also included

as a positive control in each experiment. Dimethoate concentrations used for these positive

controls were 1.17 mg/L for A. mellifera, 1.3 mg/L for B. terrestris and 2.41 mg/L for O. bicornis.

Table 1. Summary of the Potentiation experiments that involved tests of the concentration response of the first listed chemicals in the presence

and absence (+/-) of the second chemical and mixture toxicity conducted with different exposure levels and ratio of the two chemicals undertaken

for Apis mellifera, Bombus terrestris and Osmia bicornis.

Treatments and mixtures tested Apis mellifera Bombus terrestris Osmia bicornis

Potentiation experiments

Dimethoate ± Propiconazole X X

Clothianidin ± Propiconazole X X X

Clothianidin ± Tau-fluvalinate X X

Mixture toxicity experiments

Clothianidin & Dimethoate X X X

Clothianidin & Cadmium X

Cadmium & Arsenic X

https://doi.org/10.1371/journal.pone.0176289.t001
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Survival in these positive controls across all experimental positive control treatments were 66%

for A. mellifera and 61% for B. terrestris at 96 h, and 53% for O. bicornis at 48 h. These survival

rates are each broadly consistent with expected sensitivity across all experiments.

The two main types of test designs used were: “Potentiation” experiments and “Mixture

Toxicity” experiments (see Table 1). Potentiation experiments were conducted for cases where

only one of the chemicals (dimethoate or clothianidin) in the binary mixture was expected to

cause adverse effects on survival across tested concentrations. Bees were exposed to a range of

concentrations of this toxic chemical in the presence or absence of the second chemical, which

was not expected to affect survival at the tested concentrations (design shown in Fig 1a, exact

tested concentration for all experiments detailed within the raw data file associated with this

work available through Dryad under doi:10.5061/dryad.676ng). From this design, the mixture

effect could be assessed as the potentiation (i.e. increase) or alleviation (i.e. decrease) in the

effects of the overtly toxic chemical as a result of the presence of the second chemical. The

default expectation based on an assumption of no interaction was that the concentration effect

responses for the toxic chemical would be similar in each separate series, irrespective of the

presence, or not, of the second substance. The concentrations of the potentiating chemicals

(tau-fluvalinate or propiconazole) were set at 10x reported environmental concentrations to

represent a plausible environmental worst case exposure, given that there was only an

extremely small amount of environmental measurement data for each compound available.

Reported environmental concentrations are 0.042 mg/L for propiconazole as measured in

honey and 0.221 mg/L for tau-fluvalinate in bee bread [25–27]. In some experiments, a further

treatment of 100x the environmental concentrations of the potentiating chemical was also

included as a toxicological case study. Exposure concentrations of the potentiating chemicals

were always tested separately to confirm they had no direct effect on survival.

Mixture Toxicity experiments (see Table 1) included two chemicals each shown to cause

overt effects on survival at the tested concentrations [20]. Three mixture toxicity experiments

were conducted using a concentration addition (CA) design that would also allow analysis for

independent action. Treatments included different effect levels (e.g. 0, 0.25, 0.5, 1 and 2 toxic

unit (TU) treatments) and also different mixture ratios (e.g. equitoxic, dominated by com-

pound 1, dominated by compound 2) to assess how effects on survival were affected across the

concentration range for different mixtures (design shown in see Fig 1b). Inclusion of single

chemical treatments at the same levels as used in the mixture treatments was key to allowing

analysis against independent action (IA) model predictions. Thus, the design used allows a

robust assessment of the extent to which observed effects relate to predictions based on single

chemical effects assuming either similar or dissimilar modes of action. The default expectation

based on an assumption of no interaction was of additivity according to prediction of one or

more of the CA or IA models.

Toxicity test protocols

Detailed protocols for testing in each species are provided in Heard et al. [20] and are summa-

rised here. For A. mellifera, eight hives were established and managed according to standard

local bee keeping practices including minimal parasite control and additional feeding to ensure

colonies were not stressed by resource limitations early in the season. All bees used were taken

from these managed hives. Each test comprised a series of single chemical or mixture treat-

ments, with three hive replicates used for each treatment. Replicates comprised groups of 10

young worker bees harvested from 1–2 brood frames from each hive. Bees were chilled at

-20˚C for no longer than 45s to allow loading into 0.9 L cages (dimensions height 14.3 cm;

width (rim, base) 9.4 cm, 6.7 cm). Individual 50 ml syringe feeders containing 10 ml of
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appropriately dosed 50% w/v sucrose solution were inserted through a hole in the base into the

test cage. All replicates were then maintained at 25˚C ± 2˚C and ~60% RH in the dark for 240

h. Mortality was recorded 3 times daily until 96 h, and thereafter every 24 h until 240 h to

allow both LC50 calculations at different time points and DEBtox modelling.

Native Bombus terrestris audax (11 colonies) were obtained from NV Biobest, Belgium and

reared on 50% w/v sucrose supplemented with fresh pollen. Three different Biobest colonies

were used separately (i.e. all bees from the same colony) as the source for bees for each of the

Fig 1. Designs for mixture experiments for cases where only one tested chemical shows a

concentration response (A. Potentiation design) and where both chemicals show a concentration

response (B. Mixture toxicity design).

https://doi.org/10.1371/journal.pone.0176289.g001
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three replicates that were used for each single chemical and mixture treatment. Test bioassays

used groups of three worker bees taken from a single commercially supplied colony within

each replicate. Bees were housed in the same flight cages, feeders and conditions as for the

honeybee studies.

Overwintered O. bicornis pupae were stored at 4±1˚C, 65±10% RH in constant dark.

Cocoons were initially size segregated, with the large pupae expected to correspond mainly to

females and smaller pupae as males. To emerge adult bees for experimental studies, an excess

of assumed (based on size) male and female pupae were warmed to 25˚C for 1–5 day depend-

ing on the time of year (shorter later in season). Emergence success was around 80% through-

out the testing season (April-June), with storage time having no effect on overall viability.

A detailed study of survival and feeding over the 240 h test duration for female O. bicornis
was carried out. This assessment indicated a cohort effect on the duration of survival. If indi-

viduals were maintained directly after hatching, one portion of the population was lost early

during husbandry, while a second cohort could be kept alive for 240 h (and beyond). Hence

for all experiments with O. bicornis, after an excess of bees were hatched, the population was

initially kept unexposed for 96 h i.e. on feeders containing only sucrose solution. Bees still alive

after this time were then subsequently used for the experiments with the expectation that they

would survive the 240 h exposure period. For all experiments, 5 males and 5 females were

exposed in each test treatment. Individuals were housed separately in the same flight cages as

used for the honeybee and bumblebee studies. Feeders comprised smaller syringes containing

5ml of 20% w/v sucrose with yellow false silk petals with a ring of UV paint attached around

the feeding hole. Experiments were kept in a controlled temperature glass house at 22 ± 2˚C

under natural photoperiod. For each replicate, mortality was recorded three times daily during

the first 96 h and, thereafter, at 24 h intervals up to 240 h. As clothianidin is subject to photo-

degradation with a stated half-life between 1–38 days in water, exposure solutions containing

this compound were changed after 5 days as a compromise between excessive disturbance of

incubated bees and maintenance of the pesticide in the food source.

Data analysis for potentiation and mixture experiments and DEBtox

modelling

Concentration response analysis for potentiation experiments: All raw data associated with

this work is available through Dryad under doi:10.5061/dryad.676ng. Each series of tested con-

centrations of the toxic chemicals in the Potentiation experiments (both those in the absence

and presence of the second chemical, See Fig 1 for design) was analysed separately using probit

analysis for the data at 48 h, 96 h and 240 h to estimate LC50 concentrations in the absence and

presence of the second compound. Based on an assumption of no contribution of the second

chemical to toxicity, LC50s determined for each chemical exposure would be expected to be

equivalent. If changes in calculated values are seen when the second chemical is present this

would be indicative of an interactive effect corresponding to synergism—lower LC50 in the

presence of the second chemical, or antagonism—higher LC50 in the presence of the second

chemical. Significant differences in LC50 in each concentration series with added propicona-

zole or tau-fluvalinate were compared to those from exposures with the second compound

using the LC50 ratio test [28].

MIXTOX modelling for mixture toxicity experiments: Analysis of the mixture toxicity

experiments used both CA and IA as an initial basis for joint effect analysis [12, 13, 15]. By

generating CA and IA predictions from the single compound data in each experiment, we

were then able to compare observed mixture effects against these predictions using log likeli-

hood testing to assess whether the observed mixture data deviated significantly from the
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prediction made according to CA and IA from the single chemical only data (approach fully

described in [15]). The initial model included parameters relating to the maximum, 50% effect

concentrations (EC50) and the slope parameter (b) of the logistic fits for each of the two chemi-

cals in the mixture. The fit of the CA and IA model was initially assessed against a null model

of no joint effect to ensure there was a significant mixture effect. Assuming this was the case,

additional functions for synergistic/antagonistic (a), concentration-ratio (bDR) and effect level

(bDL) deviations were then added in turn to the models to gauge if the extended model signifi-

cantly improved fit compared to CA or IA using chi-square analysis for the nested models. Fit-

ting the synergism/antagonism model to the data used the parameters generated from the CA

and IA model together with an initial value of zero for a. If a statistically significant improve-

ment in model fit occurred with the inclusion of a, then these parameters were used as starting

values for the concentration-ratio and effect-level models with values of zero for bDR and two

for bDL. Where significant improvements in the data fit to the model were found, the parame-

ter values can be used to ascertain the nature of the interaction (for full details of the statistical

approach see [15]). Mixtox model fits were conducted for the survival data-sets at 48 h, 96 h

and 240 h exposure times for all Mixture Toxicity experiments.

Mixture toxicity modelling for potentiation and mixture toxicity

experiments

DEB-theory can integrate different endpoints, such as growth, reproduction and survival

within one consistent framework, usually called DEBtox as initially developed by Kooijman

and Bedaux [29]. For this analysis, the survival module was used as a stand-alone modelling

framework with the complete series of survival measurements for all time points (19 in total)

used as the input to the model. The survival DEBtox module model includes a scaled one-com-

partment model to describe uptake and elimination and a hazard model to describe survival.

Four time-independent parameters are derived and used to describe the time course of toxic

effect: the Blank Killing Rate as a measure of background mortality (hr-1); the No Effect Con-

centration (NEC) as a toxicological threshold below which no effects occur for any exposure

time (mmol/L); the elimination rate (ke), which describes when the equilibrium between inter-

nal and external concentration occurs and killing rate (kk) as the toxic potency once the NEC

is exceeded (mmol/L-1 d-1).

This survival modelling framework of DEBtox was initially developed for single compound

data, but has been extended to analyse data from Mixture Toxicity experiments by Baas et al.

[19]. For the adaptation, an additional interaction parameter is incorporated into the extended

model. When a model fit indicates that the interactions parameter does not improve the

model fit, then the mixture is taken to be additive within the DEBtox framework and survival

probability of the mixture are the product of those of the individual compounds in the mix-

ture. If an interaction is found, then any additional parameters included in the model will pro-

vide a significantly improved fit of the model to observed effects in time over the dataset. This

application of DEBtox for mixtures to analyse survival effects in time, thus, gives valuable

insights in the overall nature of synergistic or antagonistic effects and, through the parameter

values of the model, can give toxicokinetic and toxicodynamic insights relevant to the case.

Results

Parameters derived from model fits for the probit analysis for the Potentiating experiments,

MIXTOX model fits for the Mixture Toxicity experiments and DEBtox model fits for both

experiment types are given in Tables 2, 3 and 4 respectively.
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Potentiation experiments

Dimethoate + propiconazole. Apis mellifera: Dimethoate 48 h, 96 h and 240 h LC50 values

decreased with time in each exposure series (Table 2). Lethal toxicity values conducted in the

presence of propiconazole were not significantly different from that for clothianidin alone

across all time points (LC50 ratio test p>0.05 in all cases) indicating no potentiation or

Table 2. LC50 values as concentrations in sucrose solution (μg/L) calculated from probit models fits and ratio of values between exposure in the

presence of low and high concentration of the potentiating chemical against exposure in the absence of the second chemical for the survival data

at 48h, 96 h and 240 h exposure times for the different potentiation experiments conducted for Apis mellifera, Bombus terrestris and separately for

♂ and♀Osmia bicornis.

48 h LC50

(95% CIs)

μg/L

Ratio +/- 96 h LC50

(95% CIs)

μg/L

Ratio +/- 240 h LC50

(95% CIS)

μg/L

Ratio +/-

A. mellifera

Dimethoate only 2.67 (2.26–3.08) 1.16 (0.97–1.35) 0.624 (0.525–0.723)

Dimethoate low propiconazole 3.05 (2.57–3.54) 0.88 1.55 (1.31–1.80) 0.75 0.508 (0.407–0.609) 1.23

Dimethoate high propiconazole 2.86 (2.40–3.32) 0.93 1.35 (1.13–1.58) 0.86 0.504 (0.433–0.647) 1.24

A. mellifera

Clothianidin only 0.22 (0.17–0.27) 0.128 (0.11–0.15) 0.07 (0.057–0.082)

Clothianidin low propiconazole 0.190 (0.161–0.219) 1.16 0.143 (0.12–0.166) 0.9 0.054 (0.044–0.064) 1.3

Clothianidin high propiconazole 0.21 (0.158–0.262) 1.05 0.122 (0.101–0.143) 1.05 0.053 (0.042–0.064) 1.32

A. mellifera

Clothianidin only 0.20 (0.167–0.233) 0.16 (0.131–0.189) 0.074 (0.057–0.091)

Clothianidin low tau-fluvalinate 0.17 (0.141–0.199) 1.18 0.125 (0.102–0.148) 1.28 0.066 (0.053–0.080) 1.12

Clothianidin high tau-fluvalinate 0.152 (0.126–0.178) 1.32 0.129 (0.104–0.153) 0.97 0.075 (0.052–0.098) 0.88

B. terrestris

Clothianidin only 0.027 (0.019–0.035) 0.018 (0.013–0.023) 0.016 (0.011–0.021)

Clothianidin high propiconazole 0.015 (0.011–0.019) 1.8 0.013 (0.009–0.016) 1.38 0.012 (0.009–0.016) 1.33

B. terrestris

Clothianidin only 0.027 (0.019–0.035) 0.018 (0.013–0.023) 0.016 (0.011–0.021)

Clothianidin low tau-fluvalinate 0.02 (0.016–0.024) 1.35 0.018 (0.014–0.021) 1 0.015 (0.012–0.019) 1.07

Clothianidin high tau-fluvalinate 0.018 (0.014–0.022) 1.5 0.012 (0.007–0.017) 1.5 0.007 (0.003–0.011) 2.29

♂O. bicornis

Dimethoate only 4.65 (2.34–6.96) 0.6 (0.31–0.89) 0.6 (0.31–0.89)*

Dimethoate low propiconazole 2.62 (-) 1.77 0.80 (-) 0.75 0.435 (0.255–0.615) 1.38

Dimethoate high propiconazole 3.98 (2.74–5.23) 1.17 - - 0.368 (0.236–0.501) 1.63

♀O. bicornis

Dimethoate only 3.63 (2.4–4.85) 1.011 (0.56–1.46) - -

Dimethoate low propiconazole 2.25 (-) 1.61 0.68 (0.42–0.94) 1.51 - -

Dimethoate high propiconazole 2.25 (-) 1.61 1.024 (-) - - -

♂O. bicornis

Clothianidin only 0.197 (0.119–0.275) 0.172 (0.101–0.242) 0.058 (0.017–0.098)

Clothianidin low propiconazole 0.090 (0.051–0.130) 2.18 0.084 (0.042–0.126) 2.05 0.056 (0.021–0.091) 1.04

Clothianidin high propiconazole 0.063 (0.037–0.089) 3.11 0.050 (0.025–0.076) 1.68 0.025 (0.007–0.044) 2.24

♀O. bicornis

Clothianidin only females 0.058 (0.038–0.078) 0.046 (0.024–0.068) 0.036 (0.021–0.050)

Clothianidin low propiconazole 0.051 (-) 1.14 0.042 (0.025–0.059) 1.1 0.031 (0.016–0.046) 1.16

Clothianidin high propiconazole 0.048 (0.030–0.067) 1.21 0.048 (0.030–0.067) 0.96 0.036 (0.021–0.050) 0.86

* Value calculated for 168 h.

https://doi.org/10.1371/journal.pone.0176289.t002
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alleviation of dimethoate toxicity by propiconazole (Table 1). DEBtox model NECs, elimina-

tion rates and killing rates for dimethoate were almost identical for each propiconazole expo-

sure series (Table 4). Again this suggests no interactions between the chemicals.

Osmia bicornis: Osmia bicornis probit fits were weaker than those for A. mellifera as indi-

cated by the larger 95% confidence intervals for the calculated LC50s (Table 2). A difference of

no more than a factor of 2 was observed between LC50 values for dimethoate, either alone, or

in the presence of high or low propiconazole concentrations at all times (< factor of 2). How-

ever, this potentiation was not significant for any comparison to the dimethoate only value for

any time point (LC50 ratio test p>0.05 in all cases). This was the case for both male and female

Table 3. Parameter values (EC50, b = logistic slope parameter, a synergistic/antagonistic deviation, BDR dose ratio deviation BDL dose level devia-

tion) for MIXTOX models fits for the two chemicals (Chemical 1 relates to the first listed chemical, Chemical 2 to the second listed chemical) used

in binary mixtures survival data at selected time-points for mixture toxicity experiments conducted for A. mellifera, B. terrestris and O. bicornis.

Model Exposure time

(h)

Model r2 Max Chem 1

b

Chem 1

EC50

μg/L

Chem 2

b

Chem 2

EC50

μg/L

a bDR bDL

A. mellifera

Clothianidin & dimethoate CA 96 0.809 0.945 2.44 0.087 9.57 1.35 2.47***

Clothianidin & dimethoate CA 240 0.728 0.913 2.36 0.052 3.71 0.615 3.2***

Clothianidin & dimethoate IA 96 0.788 0.98 2.19 0.082 8.29 1.3 1.59***

Clothianidin & dimethoate IA 240 0.712 0.98 1.87 0.044 3.02 0.569 3.85***

A. mellifera

Clothianidin & Cadmium CA 96 0.830 0.952 5.87 0.194 26.3 8.69

Clothianidin & Cadmium CA 240 0.827 0.971 1.49 0.054 2.98 9.17 5.77***

Clothianidin & Cadmium IA 96 0.799 0.98 3.65 0.115 2.41 12.4

Clothianidin & Cadmium IA 240 0.805 0.98 1.97 0.056 3 9.263

A. mellifera

Cadmium & Arsenic CA 96 0.817 0.98 1.61 22.3 4.30 11.7

Cadmium & Arsenic CA 240 0.689 0.98 0.97 16.9 4.47 4.97

Cadmium & Arsenic IA 96 0.825 0.98 2.62 12.6 3.7 10.6

Cadmium & Arsenic IA 240 0.695 0.98 1.12 13.1 4.37 4.93

B. terrestris

Clothianidin & dimethoate CA 96 0.729 0.914 6.25 0.021 5.27 1.47 1.74**

Clothianidin & dimethoate CA 240 0.752 0.741 19.1 0.014 5.63 0.355 4.78***

Clothianidin & dimethoate IA 96 0.720 0.89 5.78 0.022 18.40 1.35

Clothianidin & dimethoate IA 240 0.638 0.98 4.26 0.013 3.27 0.261 0.436*** -16.9*

♀O. bicornis

Clothianidin & dimethoate CA 96 0.902 0.980 4.39 0.845 0.476 0.486

Clothianidin & dimethoate CA 240 - - - - - -

Clothianidin & dimethoate IA1 96 0.807 0.95 2.91 0.389 0.206 5.85 584*

Clothianidin & dimethoate IA1 240 0.973 0.98 9.9 0.06 1.47 0.051

♂O. bicornis

Clothianidin & dimethoate CA 96 0.847 0.782 2.798 0.420 0.684 0.999 59.4*

Clothianidin & dimethoate CA 240 - - - - - -

Clothianidin & dimethoate IA1 96 0.807 0.95 2.91 0.389 0.206 5.85 584*

Clothianidin & dimethoate IA1 240 0.973 0.98 9.9 0.06 1.47 0.051

* p<0.05,

** p<0.01,

*** p<0.001.

https://doi.org/10.1371/journal.pone.0176289.t003
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Table 4. Parameter values (values in brackets are standard deviations) for DEBtox models fit for the potentiation and mixture toxicity experiments

conducted in A. mellifera, B. terrestris and O. bicornis.

Blank Killing rate

(hr-1)

NEC

(mg/L)

Killing rate

(mg/L)-1hr-1)

Elimination rate

(h-1)

interaction?

A. mellifera

dimethoate only 1.8 x 10−4 (0.7 x 10−4) 040 (003) 0057 (011) 001 (0002)

dimethoate low propiconazole 3.1 x 10−4 (1 x 10−4) 030 (004) 0062 (0014) 0007 (0002) No

dimethoate high propiconazole 3.1 x 10−4 (1 x 10−4) 035 (004) 0046 (0009) 0011 (0002)

A. mellifera

clothianidin only 2.6 x 10−4 (1.1 x 10−4) 002 (0004) 0093 (0002) 0041 (002)

clothianidin low propiconazole 3.1 x 10−4 (1.2 x 10−4) 0015 (0005) 0097 (002) 0028 (0011) No

clothianidin high propiconazole 4.1 x 10−4 (1.4 x 10−4) 0017 (0004) 012 (002) 0031 (0011)

A. mellifera

clothianidin only 9 x 10−4 (2 x 10−4) 004 fixed1 0093 (0012) 1.06 (1.40)

clothianidin low tau-fluvalinate 6.8 x 10−4 (1.6 x 10−4) 0038 (0005)1 012 (002) 084 (083) No

clothianidin high tau-fluvalinate 5.0 x 10−4 (1.0 x 10−4) 0017 (0004)1 012 (002) 025 fixed

A. mellifera

clothianidin 2.8 x 10−4 (1.4 x 10−4) 0025 (0003) 017 (003) 013 (007) No2

dimethoate 4.5 x 10−4 (1.4 x 10−4) 030 (011) 0030 (001) 0008 (0004)

A. mellifera

clothianidin only Reliable parameter estimates not possible, but expected NEC 0.04 mg/L

clothianidin with Cd No parameter estimates possible

A. mellifera

As only 8.4 x 10−4 (0.2 x 10−4) 4.4 (0.77) 3.8 x 10−3 (0.9 x 10−3) 0.016 (0.004) No

As low Cd 6.2 x 10−4 (2.1 x 10−4) 2.96 (1.10) 3.4 x 10−3 (0.8 x 10−3) 0.017 (0.007)

As high Cd 5.9 x 10−4 (2 x 10−4) 3.75 (0.92) 3.4 x 10−3 (0.8 x 10−3) 0.019 (0.0061)

B. terrestris

clothianidin only 5.6 x 10−4 (1.8 x 10−4) 23.9 (1.1) 0.0061 (0.0030) 0.30 (0.11)* Possible

clothianidin high propiconazole 6.3 x 10−4 (2.0 x 10−4) 10.9 (8.7) 0.0060 (0.0034) 0.19 (0.12)* synergism

B. terrestris

clothianidin only 1.30 x 10−4 46.7 0.12 0.004 No

clothianidin low tau-fluvalinate 4.00 x 10−4 21 0.01 1

clothianidin high tau-fluvalinate Parameters not calculated due to presence of effect from propconazole

B. terrestris

Clothianidin 10 x 10−4 (3.0 x 10−4) 23.1 (1.6) 0.0071 (0.0035) 0.47 (0.2)* Possible Antagonism

Dimethoate 1.2 x 10−3 (0.0004) 0.097 (0.077) 0.35 (0.30)* 1.7 x 10−3 (1.5 x 10−3) Antagonism

♂O. bicornis

dimethoate only 1.2 x 10−3 (6.8 x 10−4) 0.32 (0.13) 0.030 (0.016) 0.027 (0.018)

dimethoate low propiconazole 6.7 x 10−4 (4.7 x 10−4) 0.26 (0.09) 0.27 (0.16)* 0.0085 (0.004) No

dimethoate high propiconazole 7 x 10−4 * 0.25 (0.09) 0.10 * 0.014 (0.005)

♀O. bicornis

dimethoate only

dimethoate low propiconazole No parameter estimates possible No

dimethoate high propiconazole

♂O. bicornis

clothianidin only

clothianidin low propiconazole No parameter estimates possible No

clothianidin high propiconazole

♀O. bicornis

clothianidin only

(Continued )
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bees. At each time interval, the lowest LC50 value was most frequently found in the exposures

with the highest propiconazole concentration, especially for male bees. This observation points

to a small degree of potentiation. DEBtox fits for male Osmia bicornis showed lower NECs in

the presence of propiconazole (Table 4).

Estimated elimination rate was also reduced 2 and 3 fold in the presence of low and high

propiconazole concentrations, although confidence intervals of the parameter estimates over-

lapped for different exposure series. Killing rate increased in the presence of propiconazole,

although estimation of this parameter was difficult due to asymptotic behaviour. These differ-

ences, namely lower NECs, elimination rates and killing rates, suggest a possible marginal

effect of propiconazole on dimethoate toxicity in male bees. However, in all cases the differ-

ences in parameter values are small and the overlap of confidence intervals indicates that dif-

ferences are not significant. Unequivocal DEBtox fits could not be derived for female bees,

with numerous parameter combinations giving nearly equal fits. The majority of parameters

suggested similar values in ± propiconazole treatments, implying no potentiation in females.

Clothianidin ± propiconazole. Apis mellifera: Clothianidin LC50s reduced considerably

when exposure was extended from 96 h to 240 h (Table 2). The lowest LC50s were found when

clothianidin exposure took place in the presence of the high propiconazole concentration at 96

h and 240 h, but not at 48 h when the lowest value was for exposure in the presence of low pro-

piconazole (Fig 1a). However, these differences were not significant (LC50 ratio test p>0.05 in

all cases). DEBtox parameter values for clothianidin toxicity were slightly modified by the pres-

ence of propiconazole (Table 4). While calculated NECs were almost identical, the modelled

elimination rates were lower and killing rates higher for exposures conducted in the presences

of propiconazole. This may indicate a limited modifying effect of propiconazole on clothiani-

din toxicokinetics and toxicodynamics.

Bombus terrestris: Clothianidin LC50s decreased over time, falling approximately 2 fold on

extending the exposure from 48 h to 240 h of the (Table 2). A slight synergistic effect of propi-

conazole was indicated as clothianidin LC50s were decreased by 1.5 to 2 fold in the presence of

high propiconazole concentrations compared to that without co-exposure (Fig 2b). These dif-

ferences in LC50s were not significant for any time point (LC50 ratio test p>0.05 in all cases).

DEBtox fits indicated that propiconazole addition led to changes in clothianidin NEC and

Table 4. (Continued)

Blank Killing rate

(hr-1)

NEC

(mg/L)

Killing rate

(mg/L)-1hr-1)

Elimination rate

(h-1)

interaction?

clothianidin low propiconazole No parameter estimates possible

clothianidin high propiconazole

♂O. bicornis

Clothianidin No parameter estimates possible No

Dimethoate

♀O. bicornis

Clothianidin 7.0 x 10−4 * 0.26 (0.13) 0.19 (0.12) 0.005 (0.004) No

Dimethoate 7.0 x 10−4 * 0.04 (0.21) 0.25 (1.4) 0.02 (0.10)

1 NEC of all three experiments behaves identical: first min at 0.02, second at 0.04, third at 0.06; Indicated values give the best fit, however, the alternative

values may be equally valid
2 p = 0.05

* parameter difficult to estimate due to asymptotic behaviour

https://doi.org/10.1371/journal.pone.0176289.t004
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Fig 2. LC50 ± 95% confidence intervals and statistical significance of treatments with propiconazole

compared to the propiconazole only series (LC50 ratio test * = p<0.05)for Apis mellifera (top 3 panels),

Bombus terrestris (middle 3 panels), and the combined data-set of♂ and♀Osmia bicornis (bottom 3

Comparing chemical mixture effects in three bee species
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elimination rates. Change of the NEC value indicates a higher sensitivity in the presence of the

fungicide in a manner consistent with a potentiating effect of a factor of 2.

Osmia bicornis: Clothianidin LC50s consistently decreased with time in all exposure series.

For male bees, there was a 3 fold reduction in LC50 in the high propiconazole treatment com-

pared to the value without propiconazole (Fig 2c, Table 2). This reduction was significant

(LC50 ratio test p = 0.03) for the high propiconazole treatment compared to clothianidin only

at 96 h and close to significant (LC50 ratio test p = 0.08 in all cases) for the same comparison at

48 h. This points to a potentiating effect of the fungicide on clothianidin toxicity for male O.

bicornis. DEBtox models for male and female bees in exposure ± propiconazole identified a

small change in the NEC, elimination rate and killing rate parameters, which are not reported

here in detail because they are based on weak model fits. These models for males and females

also identified no interaction between the two chemicals. It is, however, possible that the fail-

ure to identify such response patterns may be a consequence of the weakness of the model fits

for the separate male and female datasets.

Clothianidin ± tau-fluvalinate. Apis mellifera: Clothianidin LC50 values were lower in

the presence of the high tau-fluvalinate concentration at 48 h, but not at later time-points

(Table 2). This suggests no consistent modifying effect of tau-fluvalinate on clothianidin

toxicity. Within DEBtox fits, the NEC was a factor of 2 lower in the test conducted in the pres-

ence of high tau-fluvalinate concentrations than that in exposures with tau-fluvalinate only

(Table 4). All three clothianidin exposure series could be fitted with different sets of DEBtox

parameter values that each gave comparable fits. NECs of 0.02, 0.04 and 0.06 mg/L gave a

similar log likelihood estimated goodness of fit. In the absence of tau-fluvalinate and at in low

concentrations series, a model with a NEC of approximately 0.04 mg/L gave best fit. In the

presence of high tau-fluvalinate, a model with a NEC of 0.02 mg/L for clothianidin gave the

best fit. The elimination rate was not strongly fixed by the data but reduced approximately

4-fold between the low and high concentration tau-fluvalinate tests. Although this difference

was not significant, changes for both values in the presence of tau-fluvalinate tentatively sug-

gest a possible small magnitude effect of high concentrations on clothianidin sensitivity and

handling. However, such changes if present evidently lead to only marginal effects on observed

toxicity.

Bombus terrestris: Against a background of decreasing clothianidin LC50 with time, an up to

1.5 fold potentiating effect of high level tau-fluvalinate co-exposure was seen across all time-

points (Table 2). However, observations of an effect on survival at high level tau-fluvalinate

means that changes in survival observed are likely to result from tau-fluvalinate toxicity rather

than any potentiation. DEBtox model fits for clothianidin effects on survival gave a range of

possible parameter values. The model fits were similar in the absence and presence of tau-flu-

valinate and were not enhanced by inclusion of an interaction parameter (Table 4). This find-

ing suggests independent and additive effects for the two chemicals rather than any interactive

toxicity to give greater than or less than additive toxicity.

Mixture toxicity experiments

Clothianidin + dimethoate. Apis mellifera: Both CA and IA provided a very significantly

improved fit compared to the null model of no joint effects for all time-points. Addition of the

S/A (synergism / antagonism) parameter significantly improved both CA and IA fits for the

mixture (Table 3). The value of a in the extended model was>1 indicating predominantly

panels) exposed to clothianidin in the presence of no, low or high concentrations of propiconazole at

exposure times of 48 h (Panel 1 of 3), 96 h (Panel 2 of 3) and 240 h (Panel 3 of 3).

https://doi.org/10.1371/journal.pone.0176289.g002
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antagonism. Addition of further parameters to the model did not significantly improve the

model fit. The DEBtox model of the effects data showed a good overall fit, which was further

improved by the addition of a parameter allowing for antagonism. The improvement was at

the boundary of significance (p = 0.05).

Bombus terrestris: MIXTOX models for all time points indicated a high significance of both

the CA and IA models against the hypothesis of no joint effects. CA (96 h r2 = 0.73, 240 h r2 =

0.75) marginally better described the observed data than IA (96 h r2 = 0.72, 240 h r2 = 0.64).

Addition of the S/A parameter to both the CA and IA significantly improved fits to the

observed data at 240 h and also at 96 h for CA, while the IA S/A model at this exposure time

was close to significant at p = 0.07. The value for a was >1 for all significant CA and IA S/A

models indicating antagonism in the mixture. Addition of the bDL parameter further signifi-

cantly improved the model fit at 240 h. The value of bDL was <1, suggesting greatest antago-

nism at high exposure levels. Within DEBtox models, NEC values and killing rates for the

mixture treatments were comparable (Table 4). Observed survival was generally higher than

predicted from the combined single chemicals models for later exposure times in the different

mixture treatments. This provides evidence of a possible antagonistic interaction for this

mixture.

Osmia bicornis: Both CA and IA gave a significant improved fit compared to the alternative

hypothesis of no joint effect. For males at 96 h, including the a parameter significantly

improved the fit of both reference models to the observed effects. The value of a was positive,

indicating antagonism. Inclusion of bDL and bDR did not further significantly improved the

model fits. For female O. bicornis, the models including interaction parameters improved the

96 h IA model fit, with a positive value for a indicating antagonism for effects at this time

point. Joint effect of these two chemicals were additive (or could not be reliably fitted) at 240 h.

DEBtox models fits for female O. bicornis (n.b. an unequivocal model fit could not be obtained

for males) were not improved by inclusion of an interaction parameter indicating mainly addi-

tive effects across the full exposure time course.

Arsenic & cadmium. Apis mellifera: Both the CA and IA fits were highly significant

against a model of no joint effect. Since 50% mortality was only approached in the top Cd

treatment at 240 hours, model fits were weaker for previous time points. IA fitted the data

slightly better than CA, although this difference was small meaning that conclusions on the

most appropriate model can only be preliminary. Inclusion of interaction parameters failed to

significantly improve the fit of either reference models for all time-points (Table 3). This sug-

gests an additive joint effect. DEBtox fits for each metal indicated no effect on parameter values

resulting from co-exposure, with the interaction parameter also not significantly improving

the model fit (Table 4). Again this suggests non-interactive additivity.

Clothianidin & cadmium. Apis mellifera: Effects of clothianidin in this mixture only

became apparent after 192 hrs exposure and Cd effects were only observed at the highest dose

(8.32 mg/L) after 96 hours. Hence, interpretation of joint effects is limited to later time-points.

MIXTOX model fits for the 96 h and 240 h survival data were each highly significant against

the alternative model of no joint effect. The S/A model for CA identified a significant interac-

tion at 240 h, but not 96 h (Table 3). The value for a was >1 suggesting antagonism. Addition

of parameters to the IA models failed to significantly improve fits for any time-point, indicat-

ing an additive effect according to IA assumptions. Since the dosing was such that significant

effects on survival were only observed after 192 h, only limited data was available for interpre-

tation of joint effect using DEBtox. Initial analysis suggested that survival following exposures

to clothianidin were significantly higher in the presence of Cd, suggesting an antagonistic

effect of Cd on clothianidin toxicity. However, this observation is derived from only a weak

model fit. Specific inclusion of an interaction term did not significantly (p> 0.05) improve the
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overall model fit, suggesting non-interactive additivity for this mixture across the full time

course.

Discussion

The capacity to identify additive, synergistic or antagonistic responses to chemical mixture

exposures can contribute to the development of more comprehensive hazard assessment of

complex chemical exposures in bee species. Identifying the mixtures that are additive can sup-

port hazard assessment using established prediction based approaches based on CA and IA

and can also allow interactive (synergistic, antagonistic) chemical combinations to be identi-

fied. By comparing observed response patterns for any given mixture across different species,

it is possible to establish whether the patterns of joint or interactive effects (additive, syner-

gism, antagonism) are species specific or common. Cases of greatest concern are those mix-

tures that elicit synergistic toxicity effects. Concern arises because risk assessments that use

toxicological data for single chemicals and predictions using established models may fail to

provide adequate protection in such cases. Where synergistic interactions are consistent

between species, this will be associated with elevated risk not just for a single species but for all

species that together deliver pollination services [30]. As such, synergistic effects represent a

currently unassessed risk to ecosystem service provision, as specifically recognised by Sanchez-

Bayo and Goka [11].

Tests for the binary mixtures studies in A. mellifera and for the dimethoate and propicona-

zole mixture in B. terrestris and O. bicornis identified a number of combinations showing non-

interactive additive toxicity (see Table 5 for summary of main response patterns from all

experiments). Hence for many cases, current models for mixture toxicity may be able to ade-

quately predict effects. In other cases mixture interactions were found. Two Potentiating

experiments with A. mellifera, namely dimethoate ± propiconazole and clothianidin ± tau-flu-

valinate, and one Mixture Toxicity experiment, with As and Cd, showed independent joint

effects. For the Potentiation mixture with dimethoate ± propiconazole that same non-interac-

tive pattern of joint effects was also seen in the study with B. terrestris and O. bicornis, suggest-

ing that the absence of any interaction was taxonomically conserved. DEBtox model fits that

Table 5. Summary of the nature of interactions identified in the joint effects of binary combinations of chemicals in potentiation and mixture toxic-

ity experiment conducted with three bee species.

96 h CA 96 h IA DEBtox

Apis mellifera

Dimethoate + propiconazole No potentiation No potentiation No potentiation

Clothianidin + propiconazole Very slight potentiation Very slight potentiation No potentiation

Clothianidin + tau-fluvalinate No potentiation No potentiation No potentiation

Dimethoate + clothanidin Antagonism Antagonism Additive

Clothianidin + Cd Slight antagonism Additive Additive

Cd + As Additive Additive Additive

Osmia bicornis

Clothianidin + propiconazole Moderate potentiation Moderate potentiation No interaction

Clothianidin + tau-fluvalinate No potentiation No potentiation No potentiation

Dimethoate + clothanidin Antagonism♂ only Antagonism♂ only Additive

Bombus terrestris

Dimethoate + propiconazole No potentiation No potentiation No potentiation

Clothianidin + propiconazole Slight potentiation Slight potentiation No potentiation

Dimethoate + clothanidin Antagonism Antagonism Possible antagonism

https://doi.org/10.1371/journal.pone.0176289.t005
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analysed all data across the time-courses for all combinations, also results in fits for these mix-

tures that were not improved by an interaction parameter. The two reference joint effect mod-

els for similarly and dissimilarly acting mixtures of CA and IA, or non-interaction DEBtox

models, therefore, offer a simple approach to conduct joint hazard assessment for these mix-

tures in bees.

The Mixture Toxicity experiment with clothianidin and Cd found slight antagonism com-

pared to CA predictions at 240 h exposure, but not at 96 h or compared to IA model predic-

tions. DEBtox analysis also suggested the presence of a possible interaction, although based on

only a weak model fit. Hence, interactions seen for these two chemicals are of only small mag-

nitude and appear both time-point dependent and relevant only to CA predictions. Previous

studies have identified some effects of trace metal exposure on organic chemical toxicokinetics.

Broerse et al. [31] found that Cd increases the hydroxylation rate of a polyaromatic hydrocar-

bon, pyrene, but slowed down its further metabolization in the Collembolan Folsomia candida,

resulting in a prolonged half-life of first phase hyrodoxlated pyrene metabolites. An interactive

effect on chlorpyrifos insecticide and nickel metal toxicity was found in the ground beetle Pter-
ostichus oblongopunctatus, however chlorpyrifos reduced nickel accumulation [32]. In con-

trast, other chlorpyrifos and nickel toxicity studies on earthworms [33] and marine mussels

[34] yielded no interaction effects. Since interactions have been found in the two arthropod

studies, but not in other taxa, interactions may be more common within the Arthropod phy-

lum than in other groups.

For the remaining two binary mixtures tested, namely the Potentiating experiment with

clothianidin ± propiconazole and the Mixture Toxicity experiment with clothianidin and

dimethoate, response patterns that were fully consistent with additivity were observed. The

highest difference found for the change in LC50 in a mixture exposure was a factor of 3 fold,

although the majority of differences were smaller than this. These interactive response patterns

were largely consistent across species, models and analysis methods. This indicates that, for

these two mixtures, more complex models that account for non-independent and non-additive

joint effects may be required for valid hazard prediction.

For the clothianidin and propiconazole Potentiation mixtures in A. mellifera only small

magnitude non-significant potentiation was found on co-exposure with higher concentration

of propiconazole (Fig 2a). The pattern of potentiation pattern was, however, more evident in

the propiconazole exposures conducted for B. terrestris (Fig 2b) and O. bicornis (Fig 2c), reach-

ing a maximum 3-fold statistically significant difference of 96 h LC50 values for O. bicornis
exposed to clothianidin in the presence of high propiconazole compared to without (Fig 2b).

Further, for male O. bicornis, potentiation was also seen in the low propiconazole series

(Fig 2c).

Previous studies of combined exposure under a potentiating experimental design have

identified synergetic interactions between neonicotinoids and known P450 inhibitors includ-

ing the sterol biosynthesis inhibiting fungicide propiconazole [8]. Synergism seen was greater

for cyano-substituted neonicotinoids (e.g. thiacloprid and acetamiprid) as compared to the

nitro-substituted neonicotinoids such as imidacloprid. Given that clothianidin is a nitro-

substituted compound, the relatively small-scale, although largely temporally and taxonomi-

cally conserved, synergisms seen here are consistent with a small modifying effect of this class

of fungicide on the toxicity of the neonicotinoid class. In a study that assessed the toxicity of

the pyrethroid tau-fluvalinate in the presence of a number of sterol biosynthesis inhibiting

fungicides, potentiations of toxicity ranging up to 100 fold for prochloraz were also found,

although most were in the 2–5 fold range [6]. These combined results across different studies,

suggest that similar synergism may occur both for neonicotinoids and also pyrethroids when

exposure occurs in the presence of a sterol biosynthesis inhibiting fungicides. Hence, further
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work on the potential for neonicotinoid and other insecticides synergism by this fungicide

class is needed to assess the range of interactions between different insecticide and fungicide

combinations.

The potential for interactions between insecticides and sterol inhibiting fungicides can be

mechanistically attributed to the inhibition of key first phase xenobiotic metabolising enzymes

such as those of the cytochrome P450 system, by the fungicide [8, 35]. Such inhibition can pre-

vent first phase detoxification of the insecticide, leading to elevated target site exposure of the

active chemical and as a result greater realised toxicity. Tau-fluvalinate is known to be highly

metabolised by honeybees and this extensive detoxification may be a primary cause of the rela-

tively low toxicity of this pyrethroid for A. mellifera [36]. Hence cytochrome P450 inhibition

by sterol inhibiting fungicides should have a profound synergistic effect. This expectation is

consistent with the previous study of Johnson et al. [6] as indeed the authors identify. Like tau-

fluvalinate, the neonicotinoid clothianidin is also subject to first phase metabolism by cyto-

chrome P450s. Accordingly inhibition of this class of enzymes through propiconazole co-

exposure has the potential to cause synergisms, as seen here in agreement with the observa-

tions of Iwasa et al. [8]. Notably, the synergism seen in this work were of relatively small scales.

This small magnitude can be could be for two possible reasons: i) clothianidin belongs to the

nitro-substituted group of neonicotinoids, which do not seem to be affected much by the fun-

gicide as shown by Iwasa et al. [8]; and, ii) the use of oral exposure in the current study, as

compared to topical application by Iwasa et al. [8], which may result in a lower realised inter-

nal concentration. However, despite differences in scale, as trends towards synergism were

commonly observed (Table 5), this interactive mechanism appears a common trait for many

bee species. This consistency of observed synergism indicates that such interactions may need

to be considered in ongoing assessments of the hazard of insecticide and sterol biosynthesis

inhibiting fungicide mixtures for hymenoptera species [11].

In all three species tested, the clothianidin and dimethoate mixture showed indication of an

antagonistic response pattern (Table 3, Fig 3). This pattern meant that in clothianidin and

Fig 3. Predicted mixture hazard based on two parameterised mixture fits for concentration addition (CA) and concentration addition with

synergistic/antagonistic (CA S/A) models for survival effects at 96 h for Apis mellifera, Bombus terrestris and Osmia bicornis exposed to a range

of single chemical and binary mixtures of clothianidin and dimethoate and observed survival effects based mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0176289.g003
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dimethoate mixtures, observed effects on survival were less that predictions for CA and IA

models, as illustrated for CA fits for A. mellifera (Fig 3a), B. terrestris (Fig 3b) and O. bicornis
(Fig 3c). While both clothianidin and dimethoate are known to be metabolised by the insect

cytochrome P450 systems, the impact of this metabolism is different for the two insecticides.

Dimethoate is metabolically activated, increasing in toxicity following the first phase metabo-

lism to dimethoxon, while clothianidin is metabolically detoxified. Hence potential exists for

enzymatic competition to cause interactive toxicity based on different rates of transformation

and substrate affinity. A further consideration is that although supplied at similar effect levels

in mixture treatments (both at 0.25 toxic units, both at 0.5 toxic units etc.), the actual concen-

tration of dimethoate in such equitoxic mixtures will exceed those of clothianidin by at least an

order of magnitude due to the higher potency of the neonicotinoid. If the higher concentra-

tions of dimethoate present induce greater cytochrome P450 isozyme expression and clothia-

nidin is a favoured substrate for the metabolising enzymes, then the presence of dimethoate

may result in higher neonicotinoid metabolism leading to a reduced toxicity for the mixture.

This would be consistent with an antagonistic joint effect as observed across tested species

(Table 2).

The co-application of pesticides is a common phenomenon in agricultural systems both

through deliberate co-exposures such as tank mixes and sequential application. Modern farm-

ing practices have progressively increased the number of active ingredients that are applied to

crops during the growing season. For example, in the UK there has been an approximate 50%

rise in the average number of active ingredients applied to arable crops over the past 15 years

from approximately 11 unique chemistries applied in 2000 to 17 in 2015 [37]. The average is

for 2.6 active ingredients to be included in each spray round which may include mixture of

insecticides and fungicide or fungicides and herbicide, but rarely combined insecticide mix-

tures, although these may be used in close sequence. Hence with a variety of compound groups

in widespread use, scenarios involving exposure to insecticide and fungicides together and

also in the presence of other environmental contaminants are highly relevant scenarios for

chemical risk assessment. As honeybees, bumblebees and solitary bees all forage widely in the

landscape, they will inevitably be exposed to mixtures corresponding to the types used in this

study.

Current schemes to assess the hazards and risks of chemical exposure to bee species take a

single chemical approach, with data on the exposure and hazard of each chemical being col-

lated and used independently for risk assessment of each compound; this approach is recog-

nised as rather over-simplistic [38]. While the existence of mixture effects in nature is well

known and may be considered for specific scenarios, it is not a regulatory requirement. This is

despite the fact that the need for improved understanding of mixture effects has been widely

recognised [1, 30, 39]. To address this gap, mixture effect prediction approaches need to be

integrated into insect pollinator risk assessment. Based on the mixture toxicity studies con-

ducted here, it is evident that existing mixture hazard prediction models (CA and IA) can

provide a first pass approach to assessment based on mode of action. Further, the ability to

analyse mixture effects in pollinators using toxicokinetic and toxicodynamic DEBtox model-

ling approaches is demonstrated as a more comprehensive and mechanistically based

approach that incorporates key physiological and resource allocation based traits into mixture

effect assessment [40, 41].

For many chemical mixtures, with the possible exception of ergosterol biosynthesis inhibit-

ing fungicides (see below), it is not fully established which combinations will operate in an

additive manner according to the mode of action (i.e. similar, dissimilar) and which, if any

show interactive joint effects (i.e. antagonistic, synergistic). This is the case for bees, as well as

other species. While mixture testing to assess especially for synergism is not feasible for many
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mixtures, the testing of priority combinations is achievable. Among interactive mixtures, those

that show synergism are the ones that may provide the greatest concern for regulators, as these

have the possibility to result in joint effects in the field that would exceed those predicted

based on information obtained from studies with the single chemical alone. Co-exposure

involving sterol inhibiting fungicides have frequently shown synergism in a range of species

[5, 24, 42, 43]. Already identified as synergistic in co-exposure with the pyrethroids tau-fluvali-

nate and lamba-cyhalothrin in honeybees [6, 35], the current study suggests such synergism

albeit of small magnitude may be relevant to mixtures with neonicotinoids supporting previ-

ous findings by Iwasa et al [8]. Hence, such mixtures may be taken as a priority set of combina-

tions for future mixtures studies to fully establish the extent of interaction across chemical

combinations, different species and different exposure times. Further, by collating data to

identify the range of joint mixture effects, probabilistic mixture assessment based on the fre-

quency of deviation from mixture models can be derived. These would give the possibility of

deriving robust protection criteria for pollinators, for exposure to chemical mixtures that still

remain to be tested.
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