33 research outputs found

    USING GIS TO MODIFY A STRATIFIED RANDOM BLOCK SURVEY DESIGN FOR MOOSE

    Get PDF
    We modified the standard, stratified random block design used typically in aerial surveys of moose (Alces alces). We laid a grid of approximately 9 km2 cells over our study area, and GIS was then used to allocate polygons into one of 2 strata within each grid cell. The 2 strata were based upon vegetation attributes that were predicted to have either high or low moose density from previous research. We assumed that polygons of early seral forest stands (<40 yr), shrubs, and meadows would have high moose density relative to other vegetation attributes. Vegetation polygons were often <1 km2, consequently, single grid cells usually included >1 high and low density polygons. Adjacent cells were amalgamated to produce sample units with >4 km2 of high density stratum area. Real-time navigation was used and the flight track was recorded over a map of sample units, strata boundaries, and topographic features to accurately identify polygon boundaries and assign each sighted moose to the appropriate strata. We concluded that our approach was efficient and effective in fine-grained environments where the relative selection by moose for vegetation patches is well understood, and those patches are mapped in digital databases

    Evaluating the Impact of Modic Changes on Operative Treatment in the Cervical and Lumbar Spine: A Systematic Review and Meta-Analysis

    Get PDF
    Modic changes (MCs) are believed to be potential pain generators in the lumbar and cervical spine, but it is currently unclear if their presence affects postsurgical outcomes. We performed a systematic review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. All studies evaluating cervical or lumbar spine postsurgical outcomes in patients with documented preoperative MCs were included. A total of 29 studies and 6013 patients with 2688 of those patients having preoperative MCs were included. Eight included studies evaluated cervical spine surgery, eleven evaluated lumbar discectomies, nine studied lumbar fusion surgery, and three assessed lumbar disc replacements. The presence of cervical MCs did not impact the clinical outcomes in the cervical spine procedures. Moreover, most studies found that MCs did not significantly impact the clinical outcomes following lumbar fusion, lumbar discectomy, or lumbar disc replacement. A meta-analysis of the relevant data found no significant association between MCs and VAS back pain or ODI following lumbar discectomy. Similarly, there was no association between MCs and JOA or neck pain following ACDF procedures. Patients with MC experienced statistically significant improvements following lumbar or cervical spine surgery. The postoperative improvements were similar to patients without MCs in the cervical and lumbar spine

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Role of enzymic antioxidants in mediating oxidative stress and contrasting wound healing capabilities in oral mucosal/skin fibroblasts and tissues

    Get PDF
    Unlike skin, oral mucosal wounds are characterized by rapid healing and minimal scarring, attributable to the “enhanced” healing properties of oral mucosal fibroblasts (OMFs). As oxidative stress is increasingly implicated in regulating wound healing outcomes, this study compared oxidative stress biomarker and enzymic antioxidant profiles between patient-matched oral mucosal/skin tissues and OMFs/skin fibroblasts (SFs) to determine whether superior oral mucosal antioxidant capabilities and reduced oxidative stress contributed to these preferential healing properties. Oral mucosa and skin exhibited similar patterns of oxidative protein damage and lipid peroxidation, localized within the lamina propria/dermis and oral/skin epithelia, respectively. SOD1, SOD2, SOD3 and catalase were primarily localized within epithelial tissues overall. However, SOD3 was also widespread within the lamina propria localized to OMFs, vasculature and the extracellular matrix. OMFs were further identified as being more resistant to reactive oxygen species (ROS) generation and oxidative DNA/protein damage than SFs. Despite histological evaluation suggesting that oral mucosa possessed higher SOD3 expression, this was not fully substantiated for all OMFs examined due to inter-patient donor variability. Such findings suggest that enzymic antioxidants have limited roles in mediating privileged wound healing responses in OMFs, implying that other non-enzymic antioxidants could be involved in protecting OMFs from oxidative stress overall

    Reasons for Transfer and Subsequent Outcomes Among Patients Undergoing Elective Spine Surgery at an Orthopedic Specialty Hospital

    Get PDF
    Objective: To evaluate the reasons for transfer as well as the 90-day outcomes of patients who were transferred from a high-volume orthopedic specialty hospital (OSH) following elective spine surgery. Materials and Methods: All patients admitted to a single OSH for elective spine surgery from 2014 to 2021 were retrospectively identified. Ninety-day complications, readmissions, revisions, and mortality events were collected and a 3:1 propensity match was conducted. Results: Thirty-five (1.5%) of 2351 spine patients were transferred, most commonly for arrhythmia (n = 7; 20%). Thirty-three transferred patients were matched to 99 who were not transferred, and groups had similar rates of complications (18.2% vs. 10.1%; P = 0.228), readmissions (3.0% vs. 4.0%; P = 1.000), and mortality (6.1% vs. 0%; P = 0.061). Conclusion: Overall, this study demonstrates a low transfer rate following spine surgery. Risk factors should continue to be optimized in order to decrease patient risks in the postoperative period at an OSH

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries

    Get PDF
    Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
    corecore