17 research outputs found

    Investigating the specificity of the neurologic pain signature against breathlessness and finger opposition

    Get PDF
    Brain biomarkers of pain, including pain-predictive “signatures” based on brain activity, can provide measures of neurophysiological processes and potential targets for interventions. A central issue relates to the specificity of such measures, and understanding their current limits will both advance their development and explore potentially generalizable properties of pain to other states. Here, we used 2 data sets to test the neurologic pain signature (NPS), an established pain neuromarker. In study 1, brain activity was measured using high-field functional magnetic resonance imaging (7T fMRI, N = 40) during 5 to 25 seconds of experimental breathlessness (induced by inspiratory resistive loading), conditioned breathlessness anticipation, and finger opposition. In study 2, we assessed anticipation and breathlessness perception (3T, N = 19) under blinded saline (placebo) and remifentanil administration. The NPS responded to breathlessness, anticipation, and finger opposition, although no direct comparisons with painful events were possible. Local NPS patterns in anterior or midinsula, S2, and dorsal anterior cingulate responded to breathlessness and finger opposition and were reduced by remifentanil. Local NPS responses in the dorsal posterior insula did not respond to any manipulations. Therefore, significant global NPS activity alone is not specific for pain, and we offer insight into the overlap between NPS responses, breathlessness, and somatomotor demand

    Plasma and cerebrospinal fluid ABeta42 for the differential diagnosis of Alzheimer's disease dementia in participants diagnosed with any dementia subtype in a specialist care setting

    Get PDF
    BackgroundDementia is a syndrome that comprises many differing pathologies, including Alzheimer's disease dementia (ADD), vascular dementia (VaD) and frontotemporal dementia (FTD). People may benefit from knowing the type of dementia they live with, as this could inform prognosis and may allow for tailored treatment. Beta-amyloid (1-42) (ABeta42) is a protein which decreases in both the plasma and cerebrospinal fluid (CSF) of people living with ADD, when compared to people with no dementia. However, it is not clear if changes in ABeta42 are specific to ADD or if they are also seen in other types of dementia. It is possible that ABeta42 could help differentiate ADD from other dementia subtypes.ObjectivesTo determine the accuracy of plasma and CSF ABeta42 for distinguishing ADD from other dementia subtypes in people who meet the criteria for a dementia syndrome.Search methodsWe searched MEDLINE, and nine other databases up to 18 February 2020. We checked reference lists of any relevant systematic reviews to identify additional studies.Selection criteriaWe considered cross-sectional studies that differentiated people with ADD from other dementia subtypes. Eligible studies required measurement of participant plasma or CSF ABeta42 levels and clinical assessment for dementia subtype.Data collection and analysisSeven review authors working independently screened the titles and abstracts generated by the searches. We collected data on study characteristics and test accuracy. We used the second version of the 'Quality Assessment of Diagnostic Accuracy Studies' (QUADAS-2) tool to assess internal and external validity of results. We extracted data into 2 x 2 tables, cross-tabulating index test results (ABeta42) with the reference standard (diagnostic criteria for each dementia subtype). We performed meta-analyses using bivariate, random-effects models. We calculated pooled estimates of sensitivity, specificity, positive predictive values, positive and negative likelihood ratios, and corresponding 95% confidence intervals (CIs). In the primary analysis, we assessed accuracy of plasma or CSF ABeta42 for distinguishing ADD from other mixed dementia types (non-ADD). We then assessed accuracy of ABeta42 for differentiating ADD from specific dementia types: VaD, FTD, dementia with Lewy bodies (DLB), alcohol-related cognitive disorder (ARCD), Creutzfeldt-Jakob disease (CJD) and normal pressure hydrocephalus (NPH). To determine test-positive cases, we used the ABeta42 thresholds employed in the respective primary studies. We then performed sensitivity analyses restricted to those studies that used common thresholds for ABeta42.Main resultsWe identified 39 studies (5000 participants) that used CSF ABeta42 levels to differentiate ADD from other subtypes of dementia. No studies of plasma ABeta42 met the inclusion criteria. No studies were rated as low risk of bias across all QUADAS-2 domains. High risk of bias was found predominantly in the domains of patient selection (28 studies) and index test (25 studies). The pooled estimates for differentiating ADD from other dementia subtypes were as follows: ADD from non-ADD: sensitivity 79% (95% CI 0.73 to 0.85), specificity 60% (95% CI 0.52 to 0.67), 13 studies, 1704 participants, 880 participants with ADD; ADD from VaD: sensitivity 79% (95% CI 0.75 to 0.83), specificity 69% (95% CI 0.55 to 0.81), 11 studies, 1151 participants, 941 participants with ADD; ADD from FTD: sensitivity 85% (95% CI 0.79 to 0.89), specificity 72% (95% CI 0.55 to 0.84), 17 studies, 1948 participants, 1371 participants with ADD; ADD from DLB: sensitivity 76% (95% CI 0.69 to 0.82), specificity 67% (95% CI 0.52 to 0.79), nine studies, 1929 participants, 1521 participants with ADD. Across all dementia subtypes, sensitivity was greater than specificity, and the balance of sensitivity and specificity was dependent on the threshold used to define test positivity.Authors' conclusionsOur review indicates that measuring ABeta42 levels in CSF may help differentiate ADD from other dementia subtypes, but the test is imperfect and tends to misdiagnose those with non-ADD as having ADD. We would caution against the use of CSF ABeta42 alone for dementia classification. However, ABeta42 may have value as an adjunct to a full clinical assessment, to aid dementia diagnosis

    Studying the brain mechanisms of dyspnoea with functional magnetic resonance imaging

    No full text
    Dyspnoea (breathlessness) is a debilitating, often poorly controlled, symptom of cardiopulmonary, neurovascular and psychological disorders. This thesis develops the necessary methodology to dissociate aspects of the acute dyspnoea experience using functional magnetic resonance imaging (FMRI) in healthy volunteers. The neuronal mechanisms underlying dyspnoea anticipation, its perceived intensity and unpleasantness and the modulation of these mechanisms by the opioid remifentanil were explored. We investigated the subjective perception of respiratory loading, a commonly used dyspnoea stimulus, and its potential systematic confounds on FMRI due to cerebral blood flow changes. Investigation of the perception of respiratory loading at different levels of hypercapnia (increased end-tidal CO2) showed that hypercapnia should be kept to a minimum to avoid increased baseline respiratory unpleasantness whilst maintaining the stable arterial CO2 (isocapnia) beneficial for FMRI analysis. Investigation of the effects of respiratory loading (± 9 cmH2O) on cerebral blood flow showed that systematic confounds of respiratory loading on perfusion-based neuroimaging data were small (~5%) and did not significantly alter neural activation in response to visual stimulation. Isocapnic respiratory loading during a classical fear-conditioning paradigm during FMRI was used to investigate dyspnoea anticipation, and dissociate the intensity and unpleasantness of acute dyspnoea by modulating unpleasantness with remifentanil. Differential neural networks were found to be involved in perceived intensity (thalamus, insula, somatosensory cortex) and unpleasantness (hippocampus, medial prefrontal cortex). Remifentanil reduced respiratory unpleasantness without affecting the perceived intensity and differentially reduced brain activity during both dyspnoea anticipation and perception. This thesis showed the potential of isocapnic respiratory loading for the study of dyspnoea with FMRI. This stimulus revealed, for the first time, brain activation for dyspnoea anticipation, perceived intensity and unpleasantness. The opioid-sensitive nature of the anticipation and unpleasantness of dyspnoea provides brain targets for future research and might facilitate more effective dyspnoea palliation.</p

    Studying the brain mechanisms of dyspnoea with functional magnetic resonance imaging

    No full text
    Dyspnoea (breathlessness) is a debilitating, often poorly controlled, symptom of cardiopulmonary, neurovascular and psychological disorders. This thesis develops the necessary methodology to dissociate aspects of the acute dyspnoea experience using functional magnetic resonance imaging (FMRI) in healthy volunteers. The neuronal mechanisms underlying dyspnoea anticipation, its perceived intensity and unpleasantness and the modulation of these mechanisms by the opioid remifentanil were explored. We investigated the subjective perception of respiratory loading, a commonly used dyspnoea stimulus, and its potential systematic confounds on FMRI due to cerebral blood flow changes. Investigation of the perception of respiratory loading at different levels of hypercapnia (increased end-tidal CO2) showed that hypercapnia should be kept to a minimum to avoid increased baseline respiratory unpleasantness whilst maintaining the stable arterial CO2 (isocapnia) beneficial for FMRI analysis. Investigation of the effects of respiratory loading (± 9 cmH2O) on cerebral blood flow showed that systematic confounds of respiratory loading on perfusion-based neuroimaging data were small (~5%) and did not significantly alter neural activation in response to visual stimulation. Isocapnic respiratory loading during a classical fear-conditioning paradigm during FMRI was used to investigate dyspnoea anticipation, and dissociate the intensity and unpleasantness of acute dyspnoea by modulating unpleasantness with remifentanil. Differential neural networks were found to be involved in perceived intensity (thalamus, insula, somatosensory cortex) and unpleasantness (hippocampus, medial prefrontal cortex). Remifentanil reduced respiratory unpleasantness without affecting the perceived intensity and differentially reduced brain activity during both dyspnoea anticipation and perception. This thesis showed the potential of isocapnic respiratory loading for the study of dyspnoea with FMRI. This stimulus revealed, for the first time, brain activation for dyspnoea anticipation, perceived intensity and unpleasantness. The opioid-sensitive nature of the anticipation and unpleasantness of dyspnoea provides brain targets for future research and might facilitate more effective dyspnoea palliation.This thesis is not currently available in ORA

    Investigating the specificity of the neurologic pain signature against breathlessness and finger opposition

    Full text link
    Brain biomarkers of pain, including pain-predictive “signatures” based on brain activity, can provide measures of neurophysiological processes and potential targets for interventions. A central issue relates to the specificity of such measures, and understanding their current limits will both advance their development and explore potentially generalizable properties of pain to other states. Here, we used 2 data sets to test the neurologic pain signature (NPS), an established pain neuromarker. In study 1, brain activity was measured using high-field functional magnetic resonance imaging (7T fMRI, N = 40) during 5 to 25 seconds of experimental breathlessness (induced by inspiratory resistive loading), conditioned breathlessness anticipation, and finger opposition. In study 2, we assessed anticipation and breathlessness perception (3T, N = 19) under blinded saline (placebo) and remifentanil administration. The NPS responded to breathlessness, anticipation, and finger opposition, although no direct comparisons with painful events were possible. Local NPS patterns in anterior or midinsula, S2, and dorsal anterior cingulate responded to breathlessness and finger opposition and were reduced by remifentanil. Local NPS responses in the dorsal posterior insula did not respond to any manipulations. Therefore, significant global NPS activity alone is not specific for pain, and we offer insight into the overlap between NPS responses, breathlessness, and somatomotor demand
    corecore