51 research outputs found

    H-ATLAS/GAMA and HeViCS - dusty early-type galaxies in different environments

    Get PDF
    NKA acknowledges the support of the Science and Technology Facilities Council. LD, RJI and SJM acknowledge support from the European Research Council Advanced Grant COSMICISM. IDL gratefully acknowledges the support of the Flemish Fund for Scientific Research (FWO-Vlaanderen). KR acknowledges support from the European Research Council Starting Grant SEDmorph (P.I. V. Wild). Date of acceptance: 22/05/2015The Herschel Space Observatory has had a tremendous impact on the study of extragalactic dust. Specifically, early-type galaxies (ETG) have been the focus of several studies. In this paper, we combine results from two Herschel studies -a Virgo cluster study Herschel Virgo Cluster Survey (HeViCS) and a broader, low-redshift Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS)/Galaxy and Mass Assembly (GAMA) study -and contrast the dust and associated properties for similar mass galaxies. This comparison is motivated by differences in results exhibited between multiple Herschel studies of ETG. A comparison between consistent modified blackbody derived dust mass is carried out, revealing strong differences between the two samples in both dust mass and dust-to-stellar mass ratio. In particular, the HeViCS sample lacks massive ETG with as high a specific dust content as found in H-ATLAS. This is most likely connected with the difference in environment for the two samples. We calculate nearest neighbour environment densities in a consistent way, showing that H-ATLAS ETG occupy sparser regions of the local Universe, whereas HeViCS ETG occupy dense regions. This is also true for ETG that are not Herschel-detected but are in the Virgo and GAMA parent samples. Spectral energy distributions are fit to the panchromatic data. From these, we find that in H-ATLAS the specific star formation rate anticorrelates with stellar mass and reaches values as high as in our Galaxy. On the other hand HeViCS ETG appear to have little star formation. Based on the trends found here, H-ATLAS ETG are thought to have more extended star formation histories and a younger stellar population than HeViCS ETG.Publisher PDFPeer reviewe

    Herschel-ATLAS/GAMA: How does the far-IR luminosity function depend on galaxy group properties?

    Get PDF
    We use the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) Phase I data to study the conditional luminosity function of far-IR (250 μm) selected galaxies in optically selected galaxy groups from the Galaxy And Mass Assembly (GAMA) spectroscopic survey, as well as environmental effects on the far-IR-to-optical colour. We applied two methods, which gave consistent results for the far-IR conditional luminosity functions. The direct matching method matches H-ATLAS sources to GAMA/SDSS (Sloan Digital Sky Survey) galaxies, then links the optical counterparts to GAMA groups. The stacking method counts the number of far-IR sources within the projected radii of GAMA groups, subtracting the local background. We investigated the dependence of the far-IR (250 μm) luminosity function on group mass in the range 1012 1012 h−1 M⊙. We also find that the far-IR-to-optical colours of H-ATLAS galaxies are independent of group mass over the range 1012 < Mh < 1014 h−1 M⊙ in the local Universe. We also compare our observational results with recent semi-analytical models, and find that none of these galaxy formation models can reproduce the conditional far-IR luminosity functions of galaxy groups

    Surgical management of pelvic floor prolapse in women using mesh

    No full text
    Objective: To evaluate surgical handling, prolapse correction and complication rate of polypropylene mesh. Methods: A retrospective review of patients who had pelvic floor repair using polypropylene mesh(PPM) and intra-vaginal sling(IVS), between January 2003 and July 2005. All patients were followed-up for a period of 6weeks to 12months.The effectiveness and complications following PPM insertion were carefully documented. Results: A total of 57 repairs of various types of prosthetic materials were carried out over the study period. 30 patients had polypropylene mesh inserted, while 27had IVS. Of the patients who had PPM inserted 27(90%) had successful repair after 12 months follow-up, while 3(10%) had failed repair. Most of these patients had previous vaginal surgery. The main complication of PPM was vaginal erosion in 3(10%) patients Conclusion: Polypropylene mesh (Prolene) is a simple effective method of treatment of pelvic floor prolapse. It is associated with minimal complications

    Galaxy and Mass Assembly (GAMA): Exploring the WISE Web in G12

    Get PDF
    We present an analysis of the mid-infrared Wide-field Infrared Survey Explorer (WISE) sources seen within the equatorial GAMA G12 field, located in the North Galactic Cap. Our motivation is to study and characterize the behavior of WISE source populations in anticipation of the deep multiwavelength surveys that will define the next decade, with the principal science goal of mapping the 3D large-scale structures and determining the global physical attributes of the host galaxies. In combination with cosmological redshifts, we identify galaxies from their WISE W1 (3.4 μm) resolved emission, and we also perform a star-galaxy separation using apparent magnitude, colors, and statistical modeling of star counts. The resulting galaxy catalog has sime590,000 sources in 60 deg2, reaching a W1 5σ depth of 31 μJy. At the faint end, where redshifts are not available, we employ a luminosity function analysis to show that approximately 27% of all WISE extragalactic sources to a limit of 17.5 mag (31 μJy) are at high redshift, z>1z\gt 1. The spatial distribution is investigated using two-point correlation functions and a 3D source density characterization at 5 Mpc and 20 Mpc scales. For angular distributions, we find that brighter and more massive sources are strongly clustered relative to fainter sources with lower mass; likewise, based on WISE colors, spheroidal galaxies have the strongest clustering, while late-type disk galaxies have the lowest clustering amplitudes. In three dimensions, we find a number of distinct groupings, often bridged by filaments and superstructures. Using special visualization tools, we map these structures, exploring how clustering may play a role with stellar mass and galaxy type

    Galaxy And Mass Assembly (GAMA) : structural investigation of galaxies via model analysis

    Get PDF
    We present single-Sérsic two-dimensional (2D) model fits to 167 600 galaxies modelled independently in the ugrizYJHK bandpasses using reprocessed Sloan Digital Sky Survey Data Release Seven (SDSS DR7) and UKIRT Infrared Deep Sky Survey Large Area Survey imaging data available from the Galaxy And Mass Assembly (GAMA) data base. In order to facilitate this study we developed Structural Investigation of Galaxies via Model Analysis (SIGMA), an R wrapper around several contemporary astronomy software packages including SOURCE EXTRACTOR, PSF EXTRACTOR and GALFIT 3. SIGMA produces realistic 2D model fits to galaxies, employing automatic adaptive background subtraction and empirical point spread function measurements on the fly for each galaxy in GAMA. Using these results, we define a common coverage area across the three GAMA regions containing 138 269 galaxies. We provide Sérsic magnitudes truncated at 10re which show good agreement with SDSS Petrosian and GAMA photometry for low Sérsic index systems (n 4), recovering as much as Δm= 0.5 mag in the r band. We employ a K-band Sérsic index/u−r colour relation to delineate the massive (n > ∼2) early-type galaxies (ETGs) from the late-type galaxies (LTGs). The mean Sérsic index of these ETGs shows a smooth variation with wavelength, increasing by 30 per cent from g through K. LTGs exhibit a more extreme change in Sérsic index, increasing by 52 per cent across the same range. In addition, ETGs and LTGs exhibit a 38 and 25 per cent decrease, respectively, in half-light radius from g through K. These trends are shown to arise due to the effects of dust attenuation and stellar population/metallicity gradients within galaxy populations

    Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06

    Get PDF
    We determine the low-redshift field galaxy stellar mass function (GSMF) using an area of 143 deg2 from the first three years of the Galaxy And Mass Assembly (GAMA) survey. The magnitude limits of this redshift survey are r < 19.4 mag over two-thirds and 19.8 mag over one-third of the area. The GSMF is determined from a sample of 5210 galaxies using a density-corrected maximum volume method. This efficiently overcomes the issue of fluctuations in the number density versus redshift. With H0= 70 km s−1 Mpc−1, the GSMF is well described between 108 and 1011.5 M⊙ using a double Schechter function with Graphic, Graphic, α1=−0.35, Graphic and α2=−1.47. This result is more robust to uncertainties in the flow-model corrected redshifts than from the shallower Sloan Digital Sky Survey main sample (r < 17.8 mag). The upturn in the GSMF is also seen directly in the i-band and K-band galaxy luminosity functions. Accurately measuring the GSMF below 108 M⊙ is possible within the GAMA survey volume but as expected requires deeper imaging data to address the contribution from low surface-brightness galaxies

    Galaxy And Mass Assembly (GAMA): the life and times of L★ galaxies

    Get PDF
    In this work, we investigate in detail the effects the local environment (groups and pairs) has on galaxies with stellar mass similar to the Milky Way (L* galaxies). A volume limited sample of 6150 galaxies are visually classified to determine the emission features, morphological type and presence of a disc. This large sample allows for the significant characteristics of galaxies to be isolated (e.g. stellar mass and group halo mass), and their codependencies determined. We observe that galaxy–galaxy interactions play the most important role in shaping the evolution within a group halo; the main role of halo mass is in gathering the galaxies together to encourage such interactions. Dominant pair galaxies find their overall star formation enhanced when the pair's mass ratio is close to 1; otherwise, we observe the same galaxies as we would in an unpaired system. The minor galaxy in a pair is greatly affected by its companion galaxy, and while the star-forming fraction is always suppressed relative to equivalent stellar mass unpaired galaxies, it becomes lower still when the mass ratio of a pair system increases. We find that, in general, the close galaxy–galaxy interaction rate drops as a function of halo mass for a given amount of stellar mass. We find evidence of a local peak of interactions for Milky Way stellar mass galaxies in Milky Way halo mass groups. Low-mass haloes, and in particular Local Group mass haloes, are an important environment for understanding the typical evolutionary path of a unit of stellar mass. We find compelling evidence for galaxy conformity in both groups and pairs, where morphological type conformity is dominant in groups, and emission class conformity is dominant in pairs. This suggests that group scale conformity is the result of many galaxy encounters over an extended period of time, while pair conformity is a fairly instantaneous response to a transitory interaction

    Galaxy And Mass Assembly (GAMA): ugrizYJHK Sérsic luminosity functions and the cosmic spectral energy distribution by Hubble type

    Get PDF
    We report the morphological classification of 3727 galaxies from the Galaxy and Mass Assembly survey with Mr < −17.4 mag and in the redshift range 0.025 < z < 0.06 (2.1 × 105 Mpc3) into E, S0-Sa, SB0-SBa, Sab-Scd, SBab-SBcd, Sd-Irr and little blue spheroid classes. Approximately 70 per cent of galaxies in our sample are disc-dominated systems, with the remaining ∼30 per cent spheroid dominated. We establish the robustness of our classifications, and use them to derive morphological-type luminosity functions and luminosity densities in the ugrizYJHK passbands, improving on prior studies that split by global colour or light profile shape alone. We find that the total galaxy luminosity function is best described by a double-Schechter function while the constituent morphological-type luminosity functions are well described by a single-Schechter function. These data are also used to derive the star formation rate densities for each Hubble class, and the attenuated and unattenuated (corrected for dust) cosmic spectral energy distributions, i.e. the instantaneous energy production budget. While the observed optical/near-IR energy budget is dominated 58:42 by galaxies with a significant spheroidal component, the actual energy production rate is reversed, i.e. the combined disc-dominated populations generate ∼1.3 times as much energy as the spheroid-dominated populations. On the grandest scale, this implies that chemical evolution in the local Universe is currently largely confined to mid-type spiral classes like our Milky Way
    corecore