4,357 research outputs found
Crossmodal content binding in information-processing architectures
Operating in a physical context, an intelligent robot faces two fundamental problems. First, it needs to combine information from its different sensors to form a representation of the environment that is more complete than any of its sensors on its own could provide. Second, it needs to combine high-level representations (such as those for planning and dialogue) with its sensory information, to ensure that the interpretations of these symbolic representations are grounded in the situated context. Previous approaches to this problem have used techniques such as (low-level) information fusion, ontological reasoning, and (high-level) concept learning. This paper presents a framework in which these, and other approaches, can be combined to form a shared representation of the current state of the robot in relation to its environment and other agents. Preliminary results from an implemented system are presented to illustrate how the framework supports behaviours commonly required of an intelligent robot
Nonperturbative Vertices in Supersymmetric Quantum Electrodynamics
We derive the complete set of supersymmetric Ward identities involving only
two- and three- point proper vertices in supersymmetric QED. We also present
the most general form of the proper vertices consistent with both the
supersymmetric and U(1) gauge Ward identities. These vertices are the
supersymmetric equivalent of the non supersymmetric Ball-Chiu vertices.Comment: seventeen pages late
Systematic Review of Risk and Protective Factors for Externalizing Problems in Children Exposed to Intimate Partner Violence
Intimate partner violence (IPV) is a serious public health issue with innumerable costs to the victims, children, and families affected as well as society at large. The evidence is conclusive regarding a strong association between exposure to IPV and children’s externalizing problems. Moving forward, the next step is to enhance our understanding of risk and protective factors associated with these outcomes in order to tailor treatments to meet the needs of both parents and children. The databases Medline, PubMed, and PsyINFO were searched combining variations of the key words such as parent*, child*, mother, partner abuse, domestic abuse, spousal abuse, interpersonal violence, domestic violence, or intimate partner violence. This search were combined with child externalizing behaviors specifically conduct*, oppositional defiant disorder, externaliz*, aggress*, hyperactivity, and ADHD. A total of 31 studies from all three databases were reviewed following application of inclusion and exclusion criteria. The main findings were that child age and gender, callous–unemotional traits, cognitive appraisals, maternal mental health, and quality of parenting emerged as key mediating and moderating factors of the relationship between IPV exposure and child externalizing problems. These findings suggest that interventions provided to families exposed to IPV need to target both maternal and child risk factors in order to successfully reduce child externalizing problems
Running coupling and fermion mass in strong coupling QED
Simple toy model is used in order to exhibit the technique of extracting the
non-perturbative information about Green's functions in Minkowski space. The
effective charge and the dynamical electron mass are calculated in strong
coupling 3+1 QED by solving the coupled Dyson-Schwinger equations for electron
and photon propagators. The minimal Ball-Chiu vertex was used for simplicity
and we impose the Landau gauge fixing on QED action. The solution obtained
separately in Euclidean and Minkowski space were compared, the latter one was
extracted with the help of spectral technique.Comment: 23 pages, 4 figures, v4: revised and extended version, one
introductory section adde
Vehicle Logo Recognition by Spatial-SIFT Combined with Logistic Regression
An efficient recognition framework requires both
good feature representation and effective classification methods.
This paper proposes such a framework based on a spatial Scale
Invariant Feature Transform (SIFT) combined with a logistic
regression classifier. The performance of the proposed framework
is compared to that of state-of-the-art methods based on the
Histogram of Orientation Gradients, SIFT features, Support
Vector Machine and K-Nearest Neighbours classifiers. By testing
with the largest vehicle logo data-set, it is shown that the proposed
framework can achieve a classification accuracy of 99.93%,
the best among all studied methods. Moreover, the proposed
framework shows robustness when noise is added in both training
and testing images
Mean field exponents and small quark masses
We demonstrate that the restoration of chiral symmetry at finite-T in a class
of confining Dyson-Schwinger equation (DSE) models of QCD is a mean field
transition, and that an accurate determination of the critical exponents using
the chiral and thermal susceptibilities requires very small values of the
current-quark mass: log_{10}(m/m_u) < -5. Other classes of DSE models
characterised by qualitatively different interactions also exhibit a mean field
transition. Incipient in this observation is the suggestion that mean field
exponents are a result of the gap equation's fermion substructure and not of
the interaction.Comment: 13 pages, 3 figures, REVTEX, epsfi
Chiral symmetry breaking in dimensionally regularized nonperturbative quenched QED
In this paper we study dynamical chiral symmetry breaking in dimensionally
regularized quenched QED within the context of Dyson-Schwinger equations. In D
< 4 dimensions the theory has solutions which exhibit chiral symmetry breaking
for all values of the coupling. To begin with, we study this phenomenon both
numerically and, with some approximations, analytically within the rainbow
approximation in the Landau gauge. In particular, we discuss how to extract the
critical coupling alpha_c = pi/3 relevant in four dimensions from the D
dimensional theory. We further present analytic results for the chirally
symmetric solution obtained with the Curtis-Pennington vertex as well as
numerical results for solutions exhibiting chiral symmetry breaking. For these
we demonstrate that, using dimensional regularization, the extraction of the
critical coupling relevant for this vertex is feasible. Initial results for
this critical coupling are in agreement with cut-off based work within the
currently achievable numerical precision.Comment: 24 pages, including 5 figures; submitted to Phys. Rev.
Entometabolomics: applications of modern analytical techniques to insect studies
Metabolomic analyses can reveal associations between an organism's metabolome and further aspects of its phenotypic state, an attractive prospect for many life-sciences researchers. The metabolomic approach has been employed in some, but not many, insect study systems, starting in 1990 with the evaluation of the metabolic effects of parasitism on moth larvae. Metabolomics has now been applied to a variety of aspects of insect biology, including behaviour, infection, temperature stress responses, CO2 sedation, and bacteria–insect symbiosis. From a technical and reporting standpoint, these studies have adopted a range of approaches utilising established experimental methodologies. Here, we review current literature and evaluate the metabolomic approaches typically utilised by entomologists. We suggest that improvements can be made in several areas, including sampling procedures, the reduction in sampling and equipment variation, the use of sample extracts, statistical analyses, confirmation, and metabolite identification. Overall, it is clear that metabolomics can identify correlations between phenotypic states and underlying cellular metabolism that previous, more targeted, approaches are incapable of measuring. The unique combination of untargeted global analyses with high-resolution quantitative analyses results in a tool with great potential for future entomological investigations
Recommended from our members
Energetic and Environmental Constraints on the Community Structure of Benthic Microbial Mats in Lake Fryxell, Antarctica.
Ecological communities are regulated by the flow of energy through environments. Energy flow is typically limited by access to photosynthetically active radiation (PAR) and oxygen concentration (O2). The microbial mats growing on the bottom of Lake Fryxell, Antarctica, have well-defined environmental gradients in PAR and (O2). We analyzed the metagenomes of layers from these microbial mats to test the extent to which access to oxygen and light controls community structure. We found variation in the diversity and relative abundances of Archaea, Bacteria and Eukaryotes across three (O2) and PAR conditions: high (O2) and maximum PAR, variable (O2) with lower maximum PAR, and low (O2) and maximum PAR. We found distinct communities structured by the optimization of energy use on a millimeter-scale across these conditions. In mat layers where (O2) was saturated, PAR structured the community. In contrast, (O2) positively correlated with diversity and affected the distribution of dominant populations across the three habitats, suggesting that meter-scale diversity is structured by energy availability. Microbial communities changed across covarying gradients of PAR and (O2). The comprehensive metagenomic analysis suggests that the benthic microbial communities in Lake Fryxell are structured by energy flow across both meter- and millimeter-scales
Intermittent aeration to improve wastewater treatment efficiency in pilot-scale constructed wetland
Forced aeration of horizontal subsurface flow constructed wetlands (HSSF CWs) is nowadays a recognized method to improve treatment efficiency, mainly in terms of ammonium removal. While numerous investigations have been reported testing constant aeration, scarce information can be found about the efficiency of intermittent aeration. This study aims at comparing continuous and intermittent aeration, establishing if there is an optimal regime that will increase treatment efficiency of HSSF CWs whilst minimizing the energy requirement. Full and intermittent aeration were tested in a pilot plant of three HSSF CWs (2.64 m2 each) fed with primary treated wastewater. One unit was fully aerated; one intermittently aerated (i.e. by setting a limit of 0.5 mg/L dissolved oxygen within the bed) with the remaining unit not aerated as a control. Results indicated that intermittent aeration was the most successful operating method. Indeed, the coexistence of aerobic and anoxic conditions promoted by the intermittent aeration resulted in the highest COD (66%), ammonium (99%) and total nitrogen (79%) removals. On the other hand, continuous aeration promotes ammonium removal (99%), but resulted in nitrate concentrations in the effluent of up to 27 mg/L. This study demonstrates the high potential of the intermittent aeration to increase wastewater treatment efficiency of CWs providing an extreme benefit in terms of the energy consumption
- …
