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Chiral symmetry breaking in dimensionally regularized nonperturbative quenched QED
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In this paper we study dynamical chiral symmetry breaking in dimensionally regularized quenched QED
within the context of Dyson-Schwinger equationsOr<4 dimensions the theory has solutions which exhibit
chiral symmetry breaking for all values of the coupling. To begin with, we study this phenomenon both
numerically and, with some approximations, analytically within the rainbow approximation in the Landau
gauge. In particular, we discuss how to extract the critical couplifyg 7/3 relevant in 4 dimensions from the
D dimensional theory. We further present analytic results for the chirally symmetric solution obtained with the
Curtis-Pennington vertex as well as numerical results for solutions exhibiting chiral symmetry breaking. For
these we demonstrate that, using dimensional regularization, the extraction of the critical coupling relevant for
this vertex is feasible. Initial results for this critical coupling are in agreement with cut-off based work within
the currently achievable numerical precisip80556-282(199)06916-7

PACS numbes): 11.30.Qc, 11.15.Tk, 11.30.Rd, 12.20.Ds

[. INTRODUCTION defined procedure for extracting the critical coupling of the 4
dimensional theory with more complicated vertices. We pro-
It is fairly well established that quantum electrodynamicsceed to the Curtis-Penningt¢@P) vertex in Sec. IV. There
(QED), and in particular quenched QED, breaks chiral sym-we derive, for solutions which do not break chiral symmetry,
metry for sufficiently large couplings. This phenomenon hagdn integral representation for the exact wave function renor-
been observed both in lattice simulatidig as well as vari- ~malization functionZ in D dimensions. We also provide an
ous studies based on the use of Dyson-Schwinger equatio@®proximate, but explicit, expression for this quantity. The
[2—4). These latter calculations have generally relied on théatter is quite useful, in the ultraviolet region, even if dy-
use of a cut-off in Euclidean momentum in order to regulatenamical chiral symmetry breaking takes place as it provides
divergent integrals, a procedure which breaks the gauge ir welcome check for the numerical investigation of chiral
variance of the theory. symmetry breaking with the CP vertex with which we con-
On the other hand, continuation of gauge theoriePto clude that section. Finally, in Sec. V, we summarize our
<4 dimensions has long been used as an efficient way tfesults and conclude.
regularize perturbation theory without violating gauge in-
variance. In nonperturbative calculations, however, the use ||. MOTIVATION AND GENERAL CONSIDERATIONS
of this method of regularization is rarely usis]. Within the

context of the Dyson-Schwinger equatiofBSES only a Although chi.raI symmetry breaking appears to be univer-
few publications[6,7] have employed dimensional regular- Sally observed independently of the precise nature of the ver-
ization instead of the usual momentum cut-off. tex used in DSE studies, it has also been recognized for a

It is the purpose of the present paper to study dynamicdpng_ time that the critical couplings with aIr_nost]aﬁf these
chiral symmetry breaking and the chiral limit within dimen- Vertices show a gauge dependence which should not be
sionally regularized quenched QED. We are motivated to d(prese_n_t for a physmal quantity. With a bare vertex this is not.
this by the wish to avoid some gauge ambiguities occurringUrPrising as this vertex An_satz breaks.the Wgrd—Takahash|
in cut-off based work, which we discuss in Sec. II. In that'dentity. However, even with the Curtis-Penningté@pP)
section we also outline some general results which one exX(ertex, which does not violate this identity and additionally
pects to be valid foD<4, independently of the particular 1S constrameq by_t_he requw_ement of perturbative mult|pI|cz_1-
vertex which one uses as an input to the DSEs. Having dontve renormalizability, a residual gauge dependence remains
this we proceed, in Sec. lll, with a study of chiral symmetry 11,12, ) o ]
breaking in the popular, but gauge non-covariant, rainbow Apart from possible deficiencies of the vertex, which we
approximation. Just as in cut-off regularized work, the rain-do not investigate in this paper, the use of cut-off regulariza-
bow approximation provides a very good qualitative guide tofion explicitly breaks the gauge symmetry even as the cut-off
what to expect for more realistic vertices and has the consid$ t@ken to infinity. This is well known in perturbation theory
erable advantage that, with certain additional approxima-
tions, one may obtain analytical results. We check numeri-
cally that the additional approximations made are in fact 'Some vertexansazeexist which lead to critical couplings which
quite justified. Indeed, it is very fortunate that it is possible toare strictly gauge independef@—10]. However, these involve ei-
obtain this analytic insight into the pattern of chiral symme-ther vertices which have unphysical singularities or ensure gauge
try breaking inD dimensions as it provides us with a well independence of the critical coupling by explicit construction.
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1.6 I T T T The dependence of and M on the dimensionality of the
space is not explicitly indicated here. Furthermore, note that
14 to a large extent we shall be dealing only with the regular-
ized theory without imposing a renormalization procedure,
12 - as renormalizatiof15,16] is inessential to our discussion.
In addition to the above, we shall consider the theory
s° 10 | without explicit chiral symmetry breakingi.e. zero bare
mas$. This theory would not contain a mass scale were it
08 not for the usual arbitrary scal@vhich we denote byv)
introduced inD =4— 2¢ dimensions which provides the con-
0.6 nection between thdimensionfulcouplingap and the usual
04 , . . . dimensionlessoupling constanty = e?/41:
-5 0 5 ¢ 10 15 20 ap= av2e. (3)

FIG. 1. The critical coupling for the CP vertex. The solid line is AS ¥ 1S the onlymass S(_:ale in the problem,.an(.j as the cou-
taken from the bifurcation analysis carried out in 2], which ~ Pling always appears in the above combination with this
agrees with the numerical resultspen squar@sof Ref.[11]. The  Scale, on dimensional grounds alone the mass function must
dashed line corresponds to the bifurcation analysis carried out with€ of the form
the “gauge violating term” removedas suggested in Ref14])
and agrees with the numerical resulépen trianglesof Ref.[15].

M ( p2) _ VCZ]'/ZEM

2
p
€ 4
- . - - V2a1/e )
(see, for example, the discussion of the axial anomaly in

Sect. 19.2 of Refl13]) and was pointed out by Roberts and yherefil is a dimensionless function and in particular
collaboratorq 14] in the present context. The latter authors

proposed a prescription for dealing with this ambiguity M(0)=val/2M(0,e). (5)
which ensures that the regularization does not violate the
Ward-Takahashi identity. Moreover, ase goes to zero the dependence on the right

As may be observed in Fig. 1, this ambiguity has a strondhand side must disappear and hence the dynamical mass
effect on the value of the critical coupling of the theory. TheM(0) is either zerqi.e. no symmetry breakingor goes to
two curves in that figure correspond to the critical couplinginfinity in this limit. This situation is analogous to what hap-
a. of Ref.[12] as well as the couplingr, one obtains by pens in cut-off regularized theory, where the scale parameter
following the prescription of Robertgt al. It is straightfor- s the cut-off itself and the mass is proportional it.

ward to show, following the analysis of R¢fl2], that these Note thatM(0,e) is not dependent om. This implies
couplings are related through immediately that there can be no non-zero critical coupling
in D#4 dimensions: iM(0) is non-zero for some coupling
, . Qac «a then it must be non-zero for all couplings.
@™ Eag’ @) Given these general consideratiomghich are of course
l+§ independent of the particular Ansatz for the vejtéxbe-

hooves one to ask how this situation can be reconciled with
a critical couplinga, of order 1 in four dimensions. In order

Also plotted in this figure are previously published numencalt0 see how this might arise, we shall extract a convenient

results[11,15 obtained with both of the above prescriptions. . ~ i i

Note that, curiously, the critical couplings obtained with theNumerical factor out oM and suggestively re-write the dy-
prescription of Ref[14] (i.e. the calculation which restores N@mical mass as

the Ward-Takahashi identixyexhibits a stronger gauge de-

pendence, at least for the range of gauge parameters shown M(0)= ,,(
in Fig. 1.

absGeiLtlgi(? oar:gb:jg:e'ts'eioiug]e;; tthh: goa?uegguiglvnaer(ijar?c?:voef ?hr/gt present there is no difference in content between (Bp.

o nd Eq.(6). However, if we nowdefinea. by demanding
theory through the regularization procedure. Hence, we NOW -+ the behavior ofM(0) is dominated by the factor
turn to dimensionally regularizedquenched QED. The

Minkowski space fermion propagat&(p) is defined in the (/@) ase goes to zero, which is equivalent to demand-
. . . ing that

usual way through the dimensionless wave function renor-

malization functionZ(p?) and the dimensionful mass func-

tion M(p?), i.e.,

1/26_
) M(0,e). (6)

Qg

[M(0.0]° —=1, v
(2 then the intent becomes clear: even thodd0) may be
S(D)E&- (2)  honzero for all couplings i <4 dimensions, in the limit
b—M(p?) that e goes to zero we obtain

065007-2
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M(0) —— 0, a<a, (8)  the coupling occuring on the right hand side of these equa-
€0 tions is theunrenormalizeatoupling«. In full QED or QCD,
as opposed to quenched QED, this is not a convenient quan-
M(0) — ==, a>ac. tity as the bare coupling will itself be a function efif the
renormalized coupling is kept fixed as the regulator is re-
Note that in the above we have not addressed the issue gioved(indeed, in lattice studies of QCD the unrenormalized
whether or not there actually isM (0,e) with the property coupling goes to zero as the lattice spacing is taken to zero;
of Eq. (7). In fact, the numerical and analytical work in the see Section 9.2 of Ref18]). Hence Eqs(5) and (6), al-
following sections is largely concerned with finding this though valid, loose their utility.
function and hence determining whether or not chiral sym- Nevertheless, it is possible to write down an equivalent
metry is indeed broken fob <4 .2 Notwithstanding this, as expression in terms of the dimensionless renormalized cou-
one knows from cut-off based work that there actually is apling a"(u?). We may use the relationship between
non-zero critical coupling foD=4, one can at this stage a=(u?), @ andv in order to eliminate the scale. Further-

already come to the conclusion m@(o,e) exists and hence More, as inD dimensions the dependence on the renormal-
that quenched QED iD<4 dimensions has a chiral sym- ized coupling enters through the dimensionful couplirfj
metry breaking solution for all couplings. Furthermore, even=a"u?¢, the appropriate equation for the unrenormalized
though the dimensionless couplimgdoes not get modified MassM(0) becomes

by vacuum polarization effects in the quenched approxima-

tion, theeffectivedimensionless couplina(qz) in D<4 di-

_ R(, 2\\1/2¢{7
mensions nevertheless runs as a functionof M(0)=pla(n5)T=M(Ose). (10

2\ e

9) In addition, should the theory under consideration have a
non-zero critical couplingas has been observed in some
Dyson-Schwinger calculations of full QED, with a small

where u is the renormalization scal€or details see, for number of fermion flavorsl; ; see Ref[4]), then Eq.(6) and

example, the discussion of the renormalization group equahe subsequent discussion remains applicable as long as the
tions in Chapter 3.2 of Ref17]). In the infrared the effective coupling a is replaced by the renormalized coupling
coupling increases without bound, suggesting not only tha,R(,,2). In particular, it would be possible to explore the
the theory is likely to break chiral symmetry for any cou- gependence of the critical coupling ®¥ by investigating
pling (for D¢4). but also that it. may actu_ally be confining. the smalle behavior of the relevanii(0,e). On the other

Although we will not pursue this further in .th'$ paper, this hand, if the four-dimensional theory breaks chiral symmetry

feature of quenched QED bears some similarity to QCD SQor all couplings(e.g. QCD only Eq. (5) remains valid and

that it may be of interest to investigate the theory Withoutthere is no essential difference betwd2r 4 andD<4. In

taking the limite—0. In this conn_ection, note also that in the this case the limit—0 could be smooth.

ultraviolet the running couplingr(g?) vanishes; i.e., irD

#4 dimensions quenched QED exhibits “asymptotic free-

dom”. Ill. THE RAINBOW APPROXIMATION

In summary, as the trivial solutiokl (p?)=0 always ex-
ists as well, we see that iD <4 dimensions the trivial and

symmetry breaking solutions bifurcate @at=0 while for D

=4 the point of bifurcation is alv=a,; i.e., there is a

discontinuous change in the point of bifurcation. Bsap-

proaches fourii.e. ase approaches Othe generated mass

M(0) decreaseggrows roughly like (a/a )Y for a<a, J, d°k MK 1

Z<q2>=am2>(%

Let us now consider an explicit vertex. To begin with, we
consider the rainbow approximation to the Euclidean mass
function of quenched QED with zero bare mass in Landau
gauge. It is given by

(=a.), respectively, becoming an infinite step function at M(p?)=(ev€)?(3—2¢) i
a=a, when e goes to zero. (2m)® K2+ M?(k?) (p—k)?
Finally, it is of interest to speculate as to how the above (1)
analysis might be carried over to other field theories, in par-
ticular full QED and QCD. Indeed, it is clear that E§) [as
well as Eq.(6) in theories which have a non-zero critical
coupling], which is based purely on a dimensional argument
will remain valid in any theory which does not contain an
explicit mass scale. However, it should be kept in mind thaﬁqu

Note that the Dirac part of the self-energy is equal to zero in
the Landau gauge in rainbow approximation everDif 4
dimensions and hence thd(p?) =1 for all p2.
It is of course possible to find the solution to E4.1)
merically—indeed we shall do so—however it is far more
instructive to first try to make some reasonable approxima-
tions in order to be able to analyze it analytically. First, as
2The reader will note that as neithier(0,e) nor M(0,e) are func-  the angular integrals involved iD-dimensional integration
tions of the couplingy, the value ofx, can be determined indepen- are standardsee, for example, Ref§7] and[17]) we may
dently of the strengtla of the self-interactions i <4 dimensions. reduce Eq(11) to a one-dimensional integral, namely

065007-3
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= dk(K2)1 M (K2) can be taken as a fixed value Bf?(k?) in the infrared re-

M(p?)= avzecef > gion (for convenience we shall call this value the “dynami-
o ke+M(k%) cal mass” m). This simplifies the problem sufficiently to
2 allow the derivation of an analytical solution.
% izF( le2—e K 0(p?— k?) In terms of the dimensionless variables=p?/v?, y
p p? =k?v* anda=m?/v? the linearized equation becomes
1 P 1 xdyy"” “M(y) (= dyy ‘M(y)
+PF(1,E,2—6, E) 0(k2—p2)], (12 M(x)=ac, ;L f—l—Jx #}
17)
where
for simplicity, we do not explicitly differentiate between
3—2¢ 3 M(x) andM (p?). This may be written in differential form as
Cé:—l—e ( 0:E> (13)
(4m)" T (2—¢) XM’ ()] + ac.x M (x) =0, (18)
mztitglﬁé;?dﬂ)o;:i;hgggss function in Eq12) reduces to with the boundary conditions
In D#4 dimensions the hypergeometric functions in Eq. M’ ()] ca=0, [XM(X)]'|xen=0. (19)

(12) preclude a solution in closed form. However, note that
these hypergeometric functions have a power expansien in thjs gitferential equation has solutions in terms of Bessel
so that for smalle one is not likely to go too far wrong by ¢ ,nctions

just replacing these by their=0 (i.e. D=4) limit. After all,

the reason for choosing dimensional regularization in the

first place is in order to regulate the integral, and this is M(x)=x"13
achieved by the factor df~ ¢, not the hypergeometric func-

tions. In addition, this approximation also corresponds to just (20

replacing the hypergeometric functions by their IR and UV . ) )
limits, so that one might expect that even for largehat the ~ Where we have defineid=1/e in order to avoid cumbersome

approximation is not too bad in these regidns. indices on the Bessel functions. The ultraviolet boundary
Making this replacement, i.e. condition Eq.(19) givesC,=0 while the infrared boundary
condition leads to

Vdac,| V4ac, , Vaac,
J}‘( €2 + €2 J)‘ EXE/Z =0. (21)
x=a

X
This equation may be simplified using the relation among
Bessel functions

Cih|l—0 a0
EXE/Z

vdac, Védac,
+CyJ_,
€

inZ dk2(k2)1—eM(k2)

M 2\ ZGCE
(PI=ar™ed 2], e c,

€xX

o AL2( L2\ —€ 2
+f dke(k9) M(k)’ 14

P K+M?(K?)

allows us to convert Eq(12) into a differential equation, ,
namely z23(2) +NJ\(2) =23 -1(2), (22

(p?)t e and becomes

[p*M’(p?)]’ +av?c M(p?)=0, (15

€ 2+ M 212
P (P) Véac, Véac, o 03
with the boundary conditions Noexel2 "N xel2 R (23

X=a

AN (N2 — 2 2\ —
P*M’(P9p2-0=0.  [P"M(P)]'[p2--=0.  (16) Clearly this equation is satisfied b§,=0, which corre-

Unfortunately, the differential equatiafl5) still has no so- SPonds to the trivial chirally symmetric solutidvi(x)=0.
lutions in terms of known special functions. Since the masgiowever, for values ok which are such that the argument of
function in the denominator of Eq14) serves primarily as the Bessel function in Eq(23) corresponds to one of its
an infrared regulator we shall make one last approximatiorf€r0€s, the equation is also satisfied@r# 0, i.e. for these
and replace it by an infrared cut-off for the integral, which Values ofa there exist solutions with dynamically broken
chiral symmetry. If we defing, _; ;= JV4ac ea? to be the
smallest positive zero of Eq23), the dynamical mass for

3 . o _ this solution becomes
It is however possible to show that a linearized version of Eq.

(11) always has symmetry breaking solutions even without making \/E /e
this approximation of the angular integrals. We indicate how this m= val?= ,,al/ZE( _E) ) (24)
may be done in Appendix A. €)r-11

065007-4
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Note that for this solution the normalizatid@y, is not fixed  Note that the behavior of the first ter(for € going to zerg

by Eq.(17) as this equation is linear iN(x). Later on we dominates over the exponential function, as required in Eq.
shall fix C; by demanding tham (a)=m, however there is (7). Hence the critical coupling in four dimensions is given
no compelling reason to do this and one might alternativelyoy =/3, as expected from cut-off based wde3].

fix the normalization in such a way as to approximate the Returning now to the mass function itself, we may substi-
true (numerica) solutions of Eqg.(11) as well as possible. tute the expression for the dynamical mass, i.e., &9),
Finally, note that, as expected, a dynamical symmetry breakkogether with our choice of normalization condition

ing solution exists for any value of the coupling and that the

expression for the dynamical mass is in agreement with the M(p?=m?)=m, (33
%Zn(egil form expected from dimensional consideratoes into Eq. (11) in order to eliminateC,. One obtains

In order to extracty,, we need to look at the behavior of m) e
mase goes to zerdi.e. \—). This may be done by noting m2 Jx[j)\—l,l' (H)
that the positive roots of the Bessel functidp have the M(p)=— : P _ (34)
following asymptotic behaviofsee, for example, Eq. 9.5.22 Ipl Jlin-14]
in Ref.[19]):

Note that the explicit dependence @n(and hencex) has
“f(0) been completely replaced lmg in this expression.
irs~Az(O)+ E — (= )\*2/3as, (25) So far we have takear independent of the regularization.
' k=1 A%t As we have seen this leads to a dynamically generated mass
] ] ) ] ) which becomes infinite as the regulator is removed. Fomin,
whereas is thesth negative zero of Airy function AR), and ot 4. [2] examined(within cut-off regularized QEDa dif-

Z({) is determined z(£)>1] from the equation ferent limit, namely one where the massis kept constant
5 1 while the cut-off is removed. In our case this limit necessi-
— (= )%= \z2—1-arccos . (26) tates that the coupling is dependent o through
3 z
o o ~ T (14 2ye2?) (35)
For large\ the variable is small and so it is valid to expand *=73 Y€

z around 1. Writingz= 1+ § we obtain
b [see Eq.32); note thata, is approached from abol.eThe
1 52 limit may be taken analytically in Eq34) by making use of
— _ 3/2 X J .
arccog s V25 297 (27 the known asymptotic behavior of the Bessel functi¢see
Eq. 9.3.23 of Ref[19]), i.e.
and soé= — (/2* yielding, to leading order,

2 1/3
a Jx()\+)\1’3z)~(x> Ai(—2Y3%), (36)
1
=1- o1/3) 2/3° (28) _ o ,
as well as the asymptotic expansion jqf ; ; in Eq. (30).
If we define One obtains
a M(p)=m—2(ln2+1 (37
y=— 2T2~1.855757 (29) pl m )
which agrees with the result in Rd2].
then the leading terms in the expansionjpf ; ; are To conclude this section, we analyze the validity of the
) s 3 approximations made by solving E¢L1) numerically and
Irn-1- A YANE=14H 0N ). (300 comparing it to the Bessel function solution in E&4). In

. o Fig. 2a we have plotted the mass functialivided by v) as
Also, the coefficientc, appearing in Eq(24) may be ex- 4 function of the dimensionless momentunior a moder-
panded ately large coupling ¢=0.6) ande=0.03. The solid curve
3 1 corresponds to the exact numerical re$hly. (11)] while the
c.~ —(1+de), d=In(dm)+s+4(1l) (3D dashed line is a plot of Eq34) for these parameters. As can
€0 2T 3 be seen, the approximation is not too bad and could actually
be made significantly better by adopting a different normal-

so that for smalle the dynamical mass becomes ization condition to that in Eq(33). However, no further

3 1/2¢ insight is gained by doing this and we shall not pursue it
{_(1+d5) 1/2e further.
M~ vatl? ~v<% plrdi2—ye 1B One might naively think that most of the difference be-
(1+ 762/3_ 6)1/6 w3

tween the Bessel function and the exact numerical solution
(32 comes from the linearization of E¢l1)—i.e., the approxi-

065007-5
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(@) (b) other words, even in the limié—0 there remains a remnant
-5 . 7 : x of the “approximation,” namely a rescaling df1(0) by a
log(M[x]/v) 6 -0, Integrand factor e'’>~1.6!
s LT \ (x10%)
Sr . x=7.1x107" 7] IV. THE CURTIS-PENNINGTON VERTEX
L 4T We shall now leave the rainbow approximation and turn
3 L to the CP vertex. The expressions for the scalar and Dirac
self-energies for this vertex, using dimensional regularization
8 L 2r and in an arbitrary gauge, have already been given in Ref.
1L [7]. Before we discuss chiral symmetry breaking for this ver-
tex we shall first examine the chirally symmetric phase. We
-9 ' =0 ' remind the reader that in this phase in four dimensions the
B |o—g1(2) -> h ,0_918) -9 wave function renormalization has a very simple form for

this vertex[20], namely
FIG. 2. The mass function for rainbow QED far=0.6 ande
=0.03 as a function ok=p?/v?. The dynamical mass is specified 5
by m/v=2.24<10"%, wherev is the scale introduced by dimen- Z(X, )lM(X):OZ
sional regularization. The solid line corresponds to the exact nu-

merical solution of Eq(11), the dashed line is the Bessel function where the renormalized Dirac propagator is given by
of Eqg. (34 and the dotted line is the solution of the Dyson-

tallda
: (39

X
2

Schwinger equation with the hypergeometric function replaced by 2(x MZ)
unity [Eq. (14)]. In (a) the actual mass function is shown, while in S(p)= i (39)
(b) we show the integrand at a particular valuexof p

) ) Here ¢ is the gauge parameter apd is the (dimensionless
mation made by going from Eq14) to Eq.(17), as the only  renormalization scale. This power behaviorZ(i) is in fact
approximation made prior to this is to replace the hypergeogemanded by multiplicative renormalizabilii1] as well as
metric functions by unity, which is expected to be good togauge covariancgl4]. We shall derive the form of this self-
order e (i.e. in this case, 3% This turns out to be not the energy inD <4 dimensions, which will provide a very useful
case; the dotted curve in Fig. 2a corresponds tditieneri-  check on the numerical results evenMf(x)#0 as long as
cal) solution of Eq.(14). Not only is the difference to the x>[M(x)/v]>.
true solution essentially an order of magnitude larger than
expectedabout 30%—note that Fig. 2a is a log-log plat A. Z(p?) in the chirally symmetric phase
is actually of opposite sign to the equivalent difference for In the chirally symmetric phase, the unrenormaliZ)

the Bessel function. In other words, the validity of the two dina to the CP vertex b di . S b
approximations is roughly of the same order of magnitudeCorreston ing to the vertexihdimensions is given by

and they tend to compensate. a (4m)€ -
Why are the quantitative differences rather larger than Z(X)=1+E mff dyx—y

expected? On the level of the integrands the approximations 0

are actually quite good. In Fig. 2b we show the integrands of of ¥ y oY

Egs.(11), (17) and Eq.(14) for a value ofx in the infrared X (1—e) 1"1(;) + mll(§

(x=7.1x10 1. Clearly the replacement of the hypergeo-

metric functions by unity is indeed an excellent approxima-Thjs equation may be obtained from E&6) of Ref.[7] by

tion, as is the linearization performed in Hd.7) (exceptin  settingb(y) equal to zero in that equation and by using Eq.

the infrared, as expected. Note that when estimating the conag) of the same reference in order to eliminate the terms

tribution to the integral from different one should take into  with coefficienta?(y). The angular integrdl;(w) is defined

account that the x-axis in Fig. 2b is logarithmid@he real to be

source of the “relatively large” differences observed for the

y—E

Z(y)

(40)

integrals in Fig. 2a is the fact that these are integral equations IlD(w) =(1+w),F(le;2—€;w), Osw=<l (41
for the functionM (x)—small differences in the integrands
do not necessarily guarantee small differenceMifx). To |lD(W)=|?(W*1), w=1. (42)

illustrate this point, consider a hypothetical “approxima-

tion” to Eq. (17) in which we just scale the integrands by a In four dimensions the solution to E¢40) is given by a
constant factor + e and ask the question how much this Z(x) having a simple power behavior while for<4 this is
affects the solutionM(x). For x=0 the answer is rather clearly no longer the case. Nevertheless, it is possible to
simple: the hypothetical approximation just corresponds to @erive an integral representation of the solution of &)
rescaling ofx by 1+ € and asM (0) scales likex*?¢ we find by making use of the gauge covariance of this equation. We
that the solution has increased by a factor-@??¢. In  do so in Appendix B, with the result
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Z(x)=x221"T(2—¢) JO du uete %, (Vxu),
(43

wherer is defined in Eq(B4). Although this result is exact it
is somewhat cumbersome to evaluate numerically because,
for e—0, the oscillations in the integrand become increas-

ingly important. For this reason we shall approximate the

integrand in Eq(40) by its IR and UV limits, as we did for

the rainbow approximatiofas before, this approximation is

good to ordere). Using

D 2 2
I7(w)=1+ EW-FO[W ] (44)
this approximation yields
Z(x)=1 a (4w < fxd ylieZ
(X)_ +E F(2—€)§ 2 ¢ 0 y X2 (y)
- f dyy “'Z(y)|. (45)
X
This may be converted to the differential equation
" 3 ! E ! 1_ €
Z'"(x)+ ;Z (x)= N Z (x)+ZTZ(x) (46)
wherec is defined to be
~ o« (4)€ 4
C=oaT(3-o° (“47)
and the appropriate boundary conditions are
X276 Z2(X)|y=0=0, Z(X)|y=0=1. (48)

[The IR boundary condition arises from the requirement tha

the integral in Eq(45) needs to converge at its lower linjit.

In order to solve Eq(46), it is convenient to change vari-

ables to

z= z_ex‘f, (49
and to define
a= g -1 (50
€
so that the differential equation becomes
zZ'—-a(l-2)Z2' —a(a—1)Z=0, (51
while the boundary conditions now are
z7%2|,..=0, Z|,_o=1. (52)

This equation is essentially Kummer's equati@ee Eq.

PHYSICAL REVIEW D 60 065007

the following). Its general solution may be expressed in
terms of confluent hypergeometric functions, i.e.

Z=72"1e 3 C,M(a,a+2;az)+C,U(a,a+2;az)]
=e ¥ Cyy(at+1l,—az)+azy(a,—az)]+Cy[1+z]}.
(53

The UV boundary condition is fulfilled i€,=1 while C, is
not fixed by the boundary conditions. Although Eg5) is
solved by Eq.53) for arbitrary C,; we shall concentrate on
the solution withC,;=0. The reason for this is that the solu-
tion to the unapproximated integrigtq. (43)] vanishes ak
=0 (see Appendix Bwhile the term multiplyingC, in Eq.
(53) diverges likex?<~2 and is therefore unlikely to provide
a good approximation to Eq40). Hence we obtain

c
exp ——x" €.
€

Finally, the renormalized functiog(x, %) may be obtained
from this by demanding thaf(u?, u?)=1 so that the renor-
malized wave function renormalization becomes

c c
1+ —x ¢ exp(——xf)
2—€ €

Z(leu‘z): E E
4+ —2e _ ., —2€
! 2—eM ex% Pl

1 © x
+—X €
2—€

Z(X)= (54)

(55

Only in the limit D—4 does this reduce to the usual power
behaved function found in cut-off based wofkq. (38)]
while for D<4 it vanishes non-analytically at=0. On the
other hand, note that the solution to Eg0—for finite
e—only goes to zero linearly ix. For the purpose of this
paper this difference in the analytic behavior in the infrared
does not concern us as for solutions which break chiral sym-
[netry the infrared region is regulated ?(x) so that we

do not expect the chirally symmetri€ to be a good approxi-
mation in this region in any case.

B. Chiral symmetric breaking for the CP vertex

We shall now examine dynamical chiral symmetry break-
ing for the CP vertex in the absence of any explicit symme-
try breaking by a nonzero bare mass, as before. Even for
solutions exhibiting dynamical symmetry breaking, it is to be
expected that the analytic result derived E(p()|M(X):O [EqQ.
(55)] remains valid as long ax is large compared to
(M(x)/v)? ande is sufficiently small. That this is indeed the
case is illustrated in Fig. 3, where we show a typical example
of Z7(x) for a solution which breaks chiral symmetry. In
this figure, as well as in the rest of this section, we shall be
dealing with the renormalized(x) andM(x) instead of the
unrenormalized quantities in the previous sections. This
makes no essential difference to the physics of chiral sym-
metry breaking, although it of course effects the absolute
scale ofZ(x). For a discussion of the renormalization of the
dimensionally regularized theory we refer the reader to Ref.

13.1.1 of Ref[19]; we use the notation of that reference in [7].
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FIG. 3. A typical(inversg wave function renormalization func- /
tion Z ~1(x,u?) corresponding to a chiral symmetry breaking solu-  FIG. 5. The logarithm of the dynamical mass as a function of
tion. Note that the mass functioll(x) is of the same order as 1/2¢ for a coupling ofa=1.20. All other parameters are as in Fig.
ZY(x,u?) itself. Nevertheless, the analytical chirally symmetric 4. The open squares are the numerical values while the two lines are
solution of Sec. IV A(thin line) provides an excellent approxima- fits (see main text

tion (better than one part in a thousand for u?) for x>M(x).
where the last term is subleading as compared to the first as

tends to zero. For sufficiently smad, therefore,a. is

The comparison to the analytic result in Fig. 3 provides a€ i )
lated to the gradient of (M (0)) plotted against™ -.

very convenient check on the numerics. Another check i$€ : oHed
provided by plotting the logarithm d¥1(0) against the loga- !N Fig. 5 we attempt to extraat, in this way. The loga-
rithm of the coupling. According to Ed5) this should be a  Tithm of M(0) was evaluated foe ranging from 0.03 down
straight line with gradient 1&2 As can be seen in Fig. 4 not 10 €=0.015 for a fixed gaugg=0.25. The squares corre-
only does one observe chiral symmetry breaking down t3PONds to a coupling constant=1.2, although some of the
couplings as small as=0.15, the expected linear behavior points at lowere have actuglly been calculated at smaler
is confirmed to quite high precision. and then rescaled according to E§). At _pre_s_ent we are
Although the numerics iD<4 dimensions are clearly unable, for these parameters, to decreas@nificantly fur-

under control, the extraction of the critical couplitappro-  ther without a significant loss of numerical precisidiWe
priate in four dimensionshas proven to be numerically quite &S0 note in passing that it is quite difficult numerically to
difficult. From the discussion in Secs. Il and Ill, we antici- Move away from small values of the gauge parameger;

pate that the logarithm of the dynamical mass has the general 20, which, judging from Fig. 1, would not require a very
high numerical accuracy fat, is unfortunately not an op-

form
tion.)
M(0) 1 a — The two fits shown in Fig. 5 correspond to two different
In( >=2—In(— +In(M(0,¢)) (56) . . — -
v €\ ag assumptions for the functional form &f(0,e), which isa
priori unknown. The curves do indeed appear to be well
0 \ . : . approximated by a straight line, however we caution the
reader that this does not allow an accurate determination of
o - - a. as the gradient is essentially determined by the “trivial”
dependence on logf (more on this below The solid line
-10 1 corresponds to the assumption that the leading term in
E—zo N 6;06022 | M(0,e) has the same form as what we found in the rainbow
2 L approximation, i.e.
£ wr= 10
30 : MO)| 1 [a 1\
_40 Lo Fit: I(M[O]) = —2.4513 + 20.001 In(a) ] In(—) = 2—€|n(a—c +C1(2_6) : (57)
S0 s o ( )_0'5 00 o5 With this form the fit parameters, andc, are found to be
In{ex
le=o.15 asts] a,=0.966, c,;=—1.15. (58)

FIG. 4. The logarithm of the dynamical mass as a function of » o . .
In(a) for e=0.025(i.e. 1/2=20). The gauge parameter is fixed at Indeed, the critical coupling is similar to what is found in
¢=0.25 and the renormalization point ig?=10°. The open cut-off based workisee Sec. II; in Ref[15] the value was
squares are the numerical values while the solid line is a linear fit t§.9208 for§=0.25). At present it is difficult to make a more
these points. Note that the dependence on the coupling expected fiiecise statement, let alone differentiate between the two
Eg. (5) is reproduced to high precision. curves plotted in Fig. 1, as. is quite strongly dependent on
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the functional form assumed in EG7). In fact, allowing an  the theory(in 4 dimensionsis not as simple as in cut-off
extra constant term on the right hand side of &) reduces regularized work.

the critical coupling to 0.920 and the addition of yet a further We next turned to an examination of symmetry breaking
term proportional tae*® increases it again to 0.931. As these in the rainbow approximation in Landau gauge, both analyti-
numbers appear to converge to something of the order afally and numerically. Indeed, for this vertex one could re-
0.92 or 0.93 one might think that. has been determined to write the(linearized Dyson-Schwinger equation as a Schro
this precision. However, it is not clear that the functionaldinger equation in 4 dimensions and appeal to standard
form suggested by the rainbow approximation should beesults from elementary quantum mechanics to explicitly
taken quite this seriously. The dashed line in Fig. 5 correshow that the theory always breaks chiral symmetr{ if
sponds to a fit where the power efof the subleading term <4. We also showed how the usual critical coupliag

has been left free, i.e. = /3 may be extracted from the dimensionally regularized
work.
| M(0)) 1 inl & 1\ 5g We concluded this work with an examination of the CP
n v | 2e n a_c G 2¢ (59 vertex. By making use of the gauge covariance of the theory

we derived an exact integral expression for the wave func-
The optimum fit assuming this form for (M (0)) yields a  tion renormalization functior£(p?) of the chirally symmet-
power quite different tg; and a very much smallet,: ric solution. Furthermore we obtained a compact expression
for this quantity which is an excellent approximation to the
a.=0.825, c¢;=-0.801, c,=0.688. (60)  true Z(p?) even for solutions which break the chiral symme-
try. Finally, we extracted the critical coupling corresponding
To conclude this section, let us discuss why it is that theto this vertex and found that, within errors, it agrees with the

functional form of the subleading terM (0,e) appears to be standard cut-off results.

rather important even i is already rather small. The reason  In the future, we plan to increase the numerical precision
for this is two-fold: most importantly, although the leadiag With which we can extract this critical coupling for the CP
dependence of (M (0)) is indeede ™1, the coefficient of this ~ Vertex bly.an order of m_agnitude or so. _The factor limiting
term (leaving out the triviala dependendeis In(a,). As o, the precision at present is that when solving the propagator’s
is rather close to 1 one therefore obtains a strong suppressi&ySon-Schwinger equation with the CP vertex by iteration
of this leading term, increasing the relative importance of théhe rate of convergence decreases dramatically &sde-
subleading terms. In addition, it appears as if the numerica#reased belove~0.015. If this increase in precision can be
results favor a subleading term which is not as strongly supattained it will enable one to make a meaningful comparison
pressed(as a function ofe) as suggested by the rainbow With the cut-off based results shown in Fig. 1.
approximation(i.e. the power of ! of the subleading term In addition to the above, it would be interesting to extend

the importance of the subleading terms. symmetry breaking in this theory has been much studied in

four dimensions(employing a cut-off as a regulator; for a
review, and references, see Sec. 10.9 of Ri.as well as
V. CONCLUSIONS AND OUTLOOK in three dimensiongésee Ref[22] as well as Sec. 3 of Ref.

The primary purpose of this paper was to explore thd4]). In particular, forD=3 it is known that(at least in the
phenomenon of dynamical chiral symmetry breaking througiN¢—¢ limit, with fixed @Ny) the theory has both an ultra-
the use of Dyson-Schwinger equations with a regularizatiowviolet fixed point ata=0 and an infrared fixed point at
scheme which does not break the gauge covariance of the1. These fixed points will survive in42e dimensions,
theory, namely dimensional regularization. It is necessary thiowever in this caséwithin the same approximatiorthe
do this as the cut-off based work leads to ambiguous resultgalue of the running coupling at the infrared fixed point will
for the critical coupling of the theory precisely because of theys 1o zero likea~e. The issue of how chiral symmetry
lack of gauge covariance in those calculations. In particularyreaking is manifested in dimensionally regularized un-
this should be kept in mind when using the expected gauggyenched QED, without a cutoff, will then become closely
invariance of the critical coupling as a criterion for judging connected to the possible existence of additional fixed points
the suitability of a particular vertex. , in the theory when going beyond the lafygapproximation.

To begin with, we have shown on dimensional groundsif there are none, full QED would be trivial and uninteresting
alone and for an arbitrary vertex, that <4 dimensions \yithout the introductiorieven inD # 4 dimensionsof a new

either a symmetry breaking solution does not exist afiall  gimensjonful scale signifying the onset of physics outside
which case, however, it would also not existin=4 dimen- e theory.

siong or it exists for all nonzero values of the couplifig

which case a chiral symmetry br(_aaklng solution eX|st£)|_n ACKNOWLEDGMENTS
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APPENDIX A: CHIRAL SYMMETRY BREAKING
IN RAINBOW APPROXIMATION

In this appendix we show that the linearized version of

Eq. (12), i.e.

d°k M(k®» 1

(2m)P K2+ m? (p—k)2’
(A1)

M(p?)=(er9)3(3—2¢) f

has symmetry breaking solutions for all values of the cou-
pling. Our aim here is to convert this equation to a
Schralinger-like equation, which we do by introducing the

function
de eikrM(kZ)
"[’(r):f 2m)P° K+ m? (A2)
With this definition we have
2 de ikr 2
(—=O+m )$(f)=3 EE——Tse hﬂ(k ) (AS)
o
wherel] is the D-dimensional Laplacian and so
D
(—D+m2)¢(r)=e2u26(3—2e)f TP g
(2)P
" f d°k M(k?» 1
(2mP k2+m? (p—k)?’
(Ad)

After shifting the integration variablep(~p+k) the last
equation can be written in the form of a ScHimger-like
equation

Hep(r)=—m?y(r), (A5)

where H=—[+V(r) is the Hamiltonian,E=—m? plays
the role of an energy and the potenti&lr) given by

de emr 7
— _ n2.,2€¢ -
V(r)=—e“v°¢(3— 2E)J'(277)D = rD—2’
(A6)
where
F(l_ ) 02,,2¢

For D=3 the coefficienty is 2va while nearD=4 it is

present case this can be seen by considering the diclyer
equation(A5) for zero energy, i.eE=0. The sssymmetric
wave function then satisfies the equation

I D_l ! 77
The solution finite at the origin=0 is
1//(r)=const><rf‘lJl,E1<\/—67—7r5>. (A9)

The Bessel function in EqA9) has an infinite number of
zeros, which means that there is an infinite number of states
with E<O.

Returning now to Eq(A5), we can estimate the lowest
energy eigenvalue variationally by using

Y(ry=Ce (A10)

as a trial wave function. Her@ is related tox by demanding
that ¢ is normalized, i.e.

(2x)°
2:—

C*= 4 F D) (A11)
where() is the volume of aD-dimensional sphere. Calcu-
lating the expectation value of the “Hamiltoniar! on the
trial wave function in Eq(A10) we find
D-2

D-4

- WK ni- (A12)

Eo(x®)=(y|H|p)=«*

The minimum of the “ground state energy” in EGA12),
Eq(k), is reached at

2D73

K4’D=(D—2)F(D) n

(A13)
(for D=3 the parametek is va while nearD=4 it is
v[ al(/2)]*'?€) and is given by the expression

1\ ,D-4
D K p=2
2

(Eg)va= —M?=k?| 1- (Al14)

-1

where the 1 is the contribution from the kinetic energy while
the (D/2— 1)~ corresponds to the potential energy. for
>2 the potential is attractive and forzD <4 it is always
larger than the kinetic energy, so for this case we get dy-
namical symmetry breaking for any value ®f For example,

for D=3, one obtainE,= — k= — v?a? which coincides
precisely with the ground-state energy of the hydrogen atom
(not surprisingly, as we have used the ground-state hydrogen
wave function as our trial functignin this case the dynami-

(3/m) av?. It is well known from any standard course of cal mass isn=ra.
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For D near 4, on the other hand, we obtain from Eqg.and carrying out the inverse Fourier transform of Eg3)

(Al14) that one obtains the wave function renormalization function in an
o )1/25

m=v(e)? (A15)

2

This is of the general form anticipated in Sec. Il, with
=m/2. Indeed, foD =4, the Schrdinger equatiofA5) be-
comes an equation with the singular potential

V(r)=—r22, (A16)

_a
Ry

Again, it is known from standard quantum mecharii2z4]

that the spectrum of bound states for such a potential de-

pends on the strength of the potential: it has an infinite
number of bound states with<<0 if »>1 and bound states
are absent ifp<<1. Thus, the true critical value for the cou-
pling is expected to be.= 7/3 instead of thex.= /2 ob-
tained with the help of the variational methédhich made
use of the exponentidinsatzfor the wave function and thus
only gave an upper bound for the energy eigenvalue

APPENDIX B: CHIRALLY SYMMETRIC QED FROM THE
LANDAU-KHALATNIKOV TRANSFORMATION

Because the CP vertex in the chirally symmetric phase of

QED is gauge-covariantl4] it is possible to derive an inte-

gral representation of the wave function renormalization

function Z(x) [see Eq.(40)] from the Landau-Khalatnikov
transformation25]. This transformation relates the coordi-
nate space propagat8f(u) in one gauge to the propagator
in a different gauge. Specifically, with covariant gauge fix-
ing, we have

BE(u) = e TAO) - AWIFE=0( ) (B1)
whereA (u) is essentially the Fourier transform of the gauge-
dependent part of the photon propagator, i.e.

B de efik-u
s ¢ o S ©2
Specifically, we obtain
BE(u)=e "WFBE=0(y) (B3)
where
o
TZ—EF(—E)(W)Ef. (B4)

Substituting the coordinate-space propagator in Landal
gauge, i.e.

d®p ePv i
2mP° b 24DP

- D\
s€=°(u)=f r(?)u_o’ (B5)

arbitrary gauge, namely

Z(x)=—

D : pU 2e
D, ,aip-u —r(vu)
ZWD/ZF(Z)fd T

=x21" T (2—¢) fo du ute ", (yxu).

(B6)
Note that for smalk this function vanishes:
B
F —
Z(X)= S ey o(x?) (B7)
4e(2—¢€) '

It may be checked explicitly that EdB6) is indeed a
solution to Eq.(40) for arbitrary D by making use of the
expansion of Eq(B6) aroundx™ ¢=0. To be more precise,
consider the RHS of Eq40) upon insertion of the power®
in the place ofZ(y). Note that the integral converges only if
€>6>e—2. After some work the result is that the RHS of
Eq. (40) becomes

I'2—e
I'(e)

~LT €
1+ch5-f —(1+6—¢€)

©

I'(e+n) 1

XA T(2—etnn—o+e

(B8)

For e<1 this may simplified further by applying Dougall’s
formula (Eqg. 1.4.1 in[26]) which, in this case, reduces to

oo

>

n=-—o

I'(e+n) 1
I'(2—e+n) n—56+¢€

2 1

T sin(me)sin(m[e—8]) T(1— ) (2+6—2¢)
(B9)

Using this result, Eq(B8) becomes

2—€

5761"(1— el'(2—e)'(e—6)I'(2+€— )
2

1-c T(2+6-26)(1-9)

(B10)

Note that, as opposed to the integral representation 4.
this expression is defined faf outside the range> 6> ¢
2 and so we may use it as an analytical continuation of the

u

integral. Furthermore, note that this last expression vanishes

for integer 6=1 hence we cannot obtain a simple power
expansion around=0 for Z(x) in this way.

On the other hand, an expansion in powers of is pos-
sible. If we seek a solution of the form

065007-11



GUSYNIN, SCHREIBER, SIZER, AND WILLIAMS PHYSICAL REVIEW D60 065007

- S T(1+ne)
— —ne — _ - - @
200=3, e "™, (B11) 200=T(2- 2 F(2—e—neni
we may equate the coefficients of equal powersof after cl(—e)(3—¢) . "
inserting the serie$B11) into both sides of Eq(40). This X 5 X (B14)
way we obtain the recurrence relation for the coefficients
Ch(cg=1) as

as the series expansion of the solution to @€). The reader

Crit T may check that this coincides precisely with the correspond-

——ﬁr(—e)r(s—e) ing expansion of the solution obtained via the Landau-
Cn (n+1) Khalatnikov transformation§Eq. (B6)]. The latter may be
[(1+en+e)(2—e—en) obtained by changing the variable of integration fronto

(B12)  u/x, expanding the exponential in the integrand and mak-

— — + )
[(2=2e-emT(1+en) ing use of the standard integral

This may be solved leading to

C
EF(— e)l'(3—¢)

"T2—e)T'(1+ne)
I'(2—e—ne)n!

Ch= , (B13

f x* 1) (cx)dx=22"1¢c~ @
° r

so that finally we obtain

[1] J. Bartholomewet al, Nucl. Phys. B: Field Theory Stat. Syst. [15] F. T. Hawes, A. G. Williams, and C. D. Roberts, Phys. Rev. D

B230[FS1Q], 222(1984; for a recent review, see V. Azcoiti, 54, 5361(1996.
Nucl. Phys. B(Proc. Supp). 53, 148(1997. [16] For a discussion of numerical renormalization of the Dyson-
[2] P. I. Fomin, V. P. Gusynin, V. A. Miransky, and Yu. A. Schwinger equations, see F. T. Hawes and A. G. Williams,
Sitenko, Riv. Nuovo Cimenté, 1 (1983. Phys. Rev. D51, 3081(1995; F. T. Hawes, T. Sizer, and A.
[3] V. A. Miransky, Dynamical Symmetry Breaking in Quantum G. Williams, ibid. 55, 3866(1997).
Field Theories(World Scientific, Singapore, 1993 [17] T. Muta, Foundations of Quantum Chromodynamics—An In-
[4] For a review, see C. D. Roberts and A. G. Williams, Prog. troduction to Perturbative Methods in Gauge Theor(ésorld
Part. Nucl. Phys33, 477 (1994. Scientific, Singapore, 1987
[5] Recently, there has been some discussion of dimensional reg{it8] H. Rothe,Lattice Gauge Theorie2nd ed.(World Scientific,
larization in effective field theories; see, for example, D. R. Singapore, 1997
Phillips, S. R. Beane, and M. C. Birse, J. Phys33 3397 [19] M. Abramowitz and |. StegunHandbook of Mathematical
(1999. Functions(Dover, New York, 1972
[6] L. von Smekal, P. A. Amundsen, and R. Alkofer, Nucl. Phys.[20] D. C. Curtis and M. R. Pennington, Phys. Rev.48, 536
A529, 633 (1991); M. Becker, Ph.D. dissertation, W. W. U. (1991).
Munster, 1995. [21] N. Brown and N. Dorey, Mod. Phys. Lett. 8, 317(199J.
[7] A. W. Schreiber, T. Sizer, and A. G. Williams, Phys. Rev. D [22] R. D. Pisarski, Phys. Rev. R9, 2423(1984); T. Appelquist,
58, 125014(1998. M. J. Bowick, E. Cohler, and L. C. R. Wijewardhana, Phys.
[8] K-I. Kondo, Int. J. Mod. Phys. A7, 7239(1992. Rev. Lett. 55, 1715 (1985; T. Appelquist, M. Bowick, D.
[9] A. Bashir and M. R. Pennington, Phys. Rev. 3D, 7679 Karabali, and L. C. R. Wijewardhana, Phys. Rev3B) 3704
(1994. (1986.
[10] A. Bashir and M. R. Pennington, Phys. Rev. 33, 4694  [23] R. Courant and D. HilbertMethods of Mathematical Physics
(1996. (Interscience Publishers, New York, 1958ec. VI.5.
[11] D. C. Curtis and M. R. Pennington, Phys. Rev.4B, 4933  [24] P. M. Morse and H. Feshbacklethods of Theoretical Physics
(1993. (McGraw-Hill, New York, 1953, Sec. 12.3.
[12] D. Atkinson, J. C. R. Bloch, V. P. Gusynin, M. R. Pennington, [25] L. D. Landau and I. M. Khalatnikov, Zh.KkSp. Teor. Fiz29,
and M. Reenders, Phys. Lett. 39, 117 (1994. 89 (1956 [Sov. Phys. JETR, 69 (1956 ]; L. D. Landau, A.
[13] M. E. Peskin and D. V. Schroedein Introduction to Quan- Abrikosov, and I. M. Khalatnikov, Nuovo Cimento Supfl.
tum Field Theory(Addison-Wesley, Reading, MA, 1995 80 (1956.
[14] C. J. Burden and C. D. Roberts, Phys. ReyD5581(1993; [26] A. Erddyi, W. Magnus, F. Oberhettinger, and F. Tricomi,
Z. Dong, H. Munczek, and C. D. Roberts, Phys. Lett383 Higher Transcendental Function®icGraw-Hill, New York,
536 (1994). 1953, Sec. V.I.

065007-12



