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Abstract 1 

Metabolomic analyses can reveal associations between an organism’s metabolome and its 2 

phenotypic state, an attractive prospect for many life-sciences researchers. The metabolomic 3 

approach has been employed in some, but not many, insect study systems, starting in 1990 4 

with the evaluation of the metabolic effects of parasitism on moth larvae. Metabolomics has 5 

now been applied to a variety of aspects of insect biology, including behaviour, infection, 6 

temperature stress responses, CO2 sedation, and bacteria-insect symbiosis. From a technical 7 

and reporting standpoint, these studies have adopted a range of approaches utilising 8 

established experimental methodologies. Here we review current literature and evaluate the 9 

metabolomic approaches typically utilised by entomologists. We suggest that improvements 10 

can be made in several areas, including sampling procedures, the reduction of sampling and 11 

equipment variation, the use of sample extracts, statistical analyses, confirmation, and 12 

metabolite identification. Overall, it is clear that metabolomics can identify correlations 13 

between phenotypic states and underlying cellular metabolism that previous, more targeted, 14 

approaches are incapable of measuring. The unique combination of untargeted global 15 

analyses with high-resolution quantitative analyses results in a tool with great potential for 16 

future entomological investigations. 17 

18 
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Introduction 1 

The development of metabolomic methodologies is ongoing and has been applied to an 2 

expanding range of fields. Within the field of entomology, metabolomic techniques have 3 

been used to reveal biochemical information to aid in the understanding of physiology and 4 

behaviour. Whilst there is an increasing amount of data available regarding gene regulation 5 

(Harshman & James, 1998; Imler & Bulet, 2005; Smith et al., 2008), transcriptomics 6 

(Pauchet et al., 2009; Mittapalli et al., 2010; Zhang et al., 2010), and proteomics within insect 7 

models (Stadler & Hales, 2002; Wolschin et al., 2007; Cilia et al., 2011), information on the 8 

role of differential metabolic states in regulating insect behaviours and phenotypes has 9 

remained comparatively scarce. Those investigations that have been conducted have 10 

indicated that the ‘-omics’ approach is increasingly promising for entomological applications 11 

(Lenz et al., 2001; Kamleh et al., 2008; Coquin et al., 2008; Aliferis et al., 2012). 12 

Metabolomics is one of the newest ‘-omics’ technologies, and has rapidly expanded 13 

over the last decade, providing an integral new approach to the study of biological systems 14 

(Dettmer & Hammock, 2004; Rochfort, 2005). Though this field was first defined by Oliver 15 

et al. (1998) as ‘the quantitative measurement of the dynamic multi-parametric metabolic 16 

response of living systems to pathophysiological stimuli or genetic modification’, some 17 

entomological investigations employing a recognisably metabolomic approach pre-date the 18 

adoption of the term (e.g., Thompson et al., 1990). The growth of metabolomics is associated 19 

with the recent incorporation of high-throughput methodologies, a coupling of classical 20 

analytical methodologies with automated processing technologies. This approach aims to 21 

generate as complete a metabolite profile within a given system as possible, and catalogue 22 

any metabolic fluctuations generated by a particular environmental condition or perturbation, 23 

with metabolites defined as molecules that are necessary for, or involved in, a particular 24 

metabolic process. The discipline has generated new insights into the subtle metabolic 25 

perturbations that exist within toxicology (Robertson et al., 2011), drug functionality (Kell, 26 

2006), disease states (Schnackenberg, 2007), aging (Schnackenberg et al., 2007), and overall 27 

cellular function (Nielsen, 2003). 28 

Metabolomics possesses some advantages over the more established ‘-omics’ 29 

approaches of genomics, transcriptomics, and proteomics. In particular its focus on 30 

‘downstream’ cellular functions allows conclusions to be drawn regarding the functional 31 

metabolic phenotype of an organism. This form of analysis requires no prior knowledge of 32 

the genome of the organism under study, allowing useful biochemical data to be gathered 33 

even in the absence of full characterisation. Furthermore, the metabolomic approach provides 34 
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a snapshot of the functional metabolic phenotype by detecting the full metabolome of a tissue 1 

or organism under a particular physiological state. Combined with the use of high-throughput 2 

analytical techniques, such as nuclear magnetic resonance (NMR) and mass spectrometry 3 

(MS) (Reo, 2002; Dettmer et al., 2007), and the development of modern pattern recognition 4 

and multivariate data analysis software, metabolomics has become an effective way of 5 

summarising large changes in cell phenotype in terms of the fluctuations of a small number 6 

of metabolic pathways. 7 

There are already some excellent reviews of current uses of metabolomic 8 

technologies, along with an extensive background to the field and its history (Nicholson & 9 

Wilson, 2003; Rochfort, 2005; Lindon & Nicholson, 2008; Heather et al., 2013), and several 10 

have focused on the use of metabolomics in particular fields of study, such as ecology 11 

(ecometabolomics) (Bundy et al., 2009; Jones et al., 2013; Lankadurai et al., 2013). In this 12 

review, we focus on metabolomics studies as they have been, and can be, applied to insect 13 

study systems. Though the number of insect studies employing a metabolomic approach has 14 

increased over the last decade, the total number of publications remains low (<50). Existing 15 

publications vary widely in their utilisation of data acquisition and analysis approaches, along 16 

with their reporting of technical parameters. Many of these parameters are required for 17 

independent assessments of the veracity of a particular study’s findings; lack of their 18 

reporting can cast doubt on aspects such as insect rearing and collection, instrument stability, 19 

and data analysis. We aim to generate recommendations for improving this disparity by 20 

critically reviewing existing studies. As no prior review has attempted to critique purely 21 

‘entometabolomic’ studies we also briefly summarise some of the more novel applications of 22 

this methodology and provide a catalogue of current literature (Table 1).  23 

The specific criteria for inclusion of an insect study into this review were based on 24 

whether an investigation was recognisably metabolomic in nature. As there is debate as to the 25 

exact definition of metabolomics (Oliver et al., 1998; Beecher, 2003; Ellis et al., 2007), we 26 

include studies according to the classification of recognised metabolomic approaches 27 

(including metabolomic fingerprinting and profiling) outlined by Goodacre et al. (2004). This 28 

review primarily focuses on the analytical techniques of NMR and MS, as these are the most 29 

commonly employed instruments within metabolomic studies. We begin by briefly outlining 30 

specific methodological aspects of how entometabolomic studies are carried out and then 31 

review the current range of studies employing this approach. As optimised protocols for 32 

ecometabolomics exist, the technical aspects of this review are limited to the discussion of 33 

sampling issues specific to entomological investigations. We conclude by critiquing the 34 
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current state of the field and offering recommendations for future investigations. 1 

 2 

Establishing a metabolomic workflow 3 

A large number of reviews and methodological publications already exist outlining the major 4 

analytical and statistical steps involved in the establishment of an appropriate workflow for 5 

conducting a metabolomics, or indeed any ‘-omics’, investigation (e.g., Fiehn, 2002; 6 

Broadhurst & Kell, 2006; Tiziani et al., 2011; Nikolskiy et al., 2013; Ibáñez et al., 2013). 7 

Furthermore, there are comprehensive reviews of ecometabolomics (Sardans et al., 2011; 8 

Rivas-Ubach et al., 2013), as well as methodological protocols optimised for insect tissues 9 

(Zhang et al., 2007; Kamleh et al., 2008). Due to the existence of these publications, we limit 10 

our discussion of the technical aspects of metabolomics to a brief consideration of specific 11 

sample collection problems entometabolomic studies may particularly encounter. We also 12 

supply a simplified workflow of a model entometabolomic study (Figure 1).  13 

 14 

Sample preparation 15 

Despite the existence of standardised sample preparation methodologies (Folch et al., 1957; 16 

Hara & Radin, 1978; Wu et al., 2008), problems may arise with specific organisms, in the 17 

case of insect studies this is often specifically related to low biomass (Lorenz et al., 2011; 18 

Marcinowska et al., 2011; Kim et al., 2013). As the majority of extraction methodologies are 19 

tailored for larger biomass samples, the volumes and ratios associated with these approaches 20 

may require adaptation if adopted for low biomass investigations, such as in Wu et al. (2008). 21 

Furthermore, in order to prevent cross contamination, it may be optimal to clean the organism 22 

using high-purity water, or another appropriate solvent, prior to snap freezing. This is 23 

particularly important for entomological investigations, due to many laboratory insect 24 

populations being reared in groups where the surface of the specimen may be exposed to 25 

culture media and/or faecal matter that could affect the outcome of analysis if detected. 26 

Several common culturing components, including honey, glycerol, and ethanol, are readily 27 

detectable in metabolomic analysis, particularly in the case of 1H NMR spectroscopy 28 

(Phalaraksh et al., 2008). Diet should also be considered, particularly as highly sensitive 29 

analytical approaches may also detect differences in gut composition. A possible approach to 30 

eliminating this issue would be to perform similar extractions and analytical profiling of the 31 

insect diet: dietary spectral data could then be compared with experimental samples, and used 32 

to rule out any observed background resonances or ions. 33 

 34 
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Current approaches to entometabolomics 1 

Though many applications are currently only represented by relatively few studies, 2 

entometabolomics has contributed to the understanding of such topics as hypoxia (Coquin et 3 

al., 2008; Feala et al., 2008), insect-bacterial symbiosis (Wang et al., 2010), behavioural 4 

ecology (Lenz et al., 2001), parasitism (Thompson et al., 1990), development (Phalaraksh et 5 

al., 2008; Wu et al., 2012), infectious diseases (Aliferis et al., 2012), the effects of 6 

commercial pesticides (Derecka et al., 2013), and temperature-dependent stresses (Michaud 7 

& Denlinger, 2007, 2008; Koštál et al., 2011a,b) (Table 1). Simultaneously, metabolomic 8 

investigations have indirectly generated information about insect life histories; particularly 9 

work focusing on plant-insect interactions (Hunt et al., 2006; Faria et al., 2007; Gattolin et 10 

al., 2008; Jansen et al., 2009; Leiss et al., 2009; Hunt et al., 2010). The adoption and output 11 

of these approaches has steadily increased throughout the last decade, with novel applications 12 

appearing almost annually. 13 

Many recent investigations involving insect tissues fall within the loosely defined 14 

field of ecometabolomics (Michaud et al., 2008; Sardans et al., 2011). The majority of 15 

entometabolomic studies have focused on single factor approaches, often without taking into 16 

account that numerous factors can affect the metabolome (e.g., time since the animal last fed, 17 

its health status and its age, the effects of varying the circadian rhythm). The metabolome is 18 

in fact highly dynamic, and this repeated fluctuation makes it virtually impossible to 19 

characterise every metabolite present within an individual insect (Sardans et al., 2011). 20 

Further, in order to obtain estimates of the natural metabolomic state, it is often desirable to 21 

perform entomological studies in the field, even though it may not be possible to regulate 22 

certain behavioural or physiological factors (e.g., diet and feeding time, photoperiod). A 23 

transition between field conditions and final laboratory-based metabolomic analysis can also 24 

result in metabolomic perturbations. Minimising potential sources of external biological 25 

variation is critical for a metabolomic experimental design, as a result it is particularly 26 

important to consider external sources of variation that may result from such a transition 27 

(e.g., maintaining change of wild diet to laboratory-based diet, stress generated due to change 28 

of environment). Foray et al. (2013) deliberately attempted to avoid such variation by only 29 

allowing specimens to undergo short-term acclimation prior to metabolomic analysis, whilst 30 

Derecka et al. (2013) avoided any such acclimation by conducting metabolome quenching in 31 

the field. However, field quenching relies on constancy of several factors, including the 32 

availability of a quenching mechanism, sampling point consistency, and maintenance of the 33 

sample at sub-zero temperatures. In the case of laboratory studies involving laboratory 34 
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cultures the existence of many established insect stocks can mitigate this, as the long term 1 

culturing of specimens in a stable environment may largely eliminate environmental 2 

perturbations. 3 

 4 

Metabolite profiling 5 

The majority of MS-based insect metabolome studies have utilised the model organism 6 

Drosophila melanogaster Meigen (Kamleh et al., 2008, 2009; Hammad et al., 2011; Koštál et 7 

al., 2011a,b; Bratty et al., 2012; Colinet & Renault, 2012). This is not surprising, given that 8 

the combination of a large well-characterised stock of genetic mutants, genetic tractability, 9 

and a known organismal complexity make an ideal choice for generating insight into the 10 

composition and organisation of metabolic networks (Kamleh et al., 2008, 2009). The use of 11 

high resolution analytical techniques also provides a solution to a remaining disadvantage, 12 

that of low biomass. 13 

By combining this approach with the use of pooled samples, >200 metabolites have 14 

been identified using liquid chromatography (LC)-MS (Kamleh et al., 2008), including 15 

absolute lipid quantification (Kamleh et al., 2009) and validation (Hammad et al., 2011). 16 

These studies further indicated the practicality of LC-MS to detect differences between 17 

extremely low-biomass insect treatments, to the extent of being able to differentiate between 18 

individual Drosophila belonging to different subspecies or mutant types. 19 

Many current NMR-based analyses of the insect metabolome have focused on 20 

characterising the properties of insect biofluids, with specific focus on the composition of 21 

larval and pupal haemolymph (Thompson, 1990; Thompson et al., 2001; Lenz et al., 2001; 22 

Phalaraksh et al., 2008). These studies provided expanded information regarding the 23 

composition of amino acids, organic acids, sugars, and the role of ethanol. Perhaps the most 24 

important aspect of these early studies is the generation of an available list of common insect 25 

haemolymph metabolites (Phalaraksh et al., 2008); this is applicable for metabolite 26 

identification in both insect and crustacean investigations (Poynton et al., 2011). The list 27 

includes a large number of high-concentration molecules, the variation of which has been 28 

related to social behaviour (Wu et al., 2012) and heat stress (Michaud & Denlinger, 2007). 29 

However, the detection of alterations of metabolites present at a low concentration can be 30 

problematic, due to the over representation of many sugars within the 4-3 p.p.m. region of 31 

most NMR spectra generated from both haemolymph and full tissue extractions (Figure 2). 32 

Any attempt to assign identifications to resonances within this region would require further 33 

spectral information, such as two-dimensional (2D) NMR, an approach that has been utilised 34 
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by more recent studies (Malmendal et al., 2006; Overgaard et al., 2007; Coquin et al., 2008; 1 

Hawes et al., 2008; Pedersen et al., 2008; Feala et al., 2009). 2 

 3 

Hypoxia and anaesthesia 4 

The use of LC-/gas chromatography(GC)-MS and NMR has generated new insights into the 5 

metabolic effects of hypoxia in insect study systems, focusing on the regulation of glycolysis 6 

(Feala et al., 2008, 2009; Verberk et al., 2013) and fluctuations in the concentrations of free 7 

metabolites, such as proline, alanine, lactate, and acetate (Coquin et al., 2008; Koštál et al., 8 

2011b). These studies also indicated that aging was associated with a decline in hypoxia 9 

recovery; this recovery was linked to changes in free metabolite concentration after re-10 

oxygenation. These investigations illustrate another benefit of high-resolution analytical 11 

techniques when experimental tissue volumes are low. The tissue of interest, the cardiac 12 

muscle, within individual flies was not present in significant quantities to be of use in 13 

biochemical investigations. This type of analysis would also face difficulty in consistently 14 

performing an appropriate dissection protocol on an insect of this size. The less direct route 15 

of metabolic modelling offered by NMR or MS allowed this limitation to be overcome. 16 

Many entomological investigations require some form of anaesthesia in order to allow 17 

handling, colony maintenance, or identification (Viñuela, 1982; Nicolas & Sillans, 1989; 18 

Ashburner et al., 2005). Direct CO2 exposure is a widespread method of anaesthesia within 19 

entomological studies, despite a number of reported side effects concerning reproductive and 20 

behavioural traits which may impact physiological and metabolic traits (Nilson et al., 2006; 21 

Champion de Crespigny & Wedell, 2008). Colinet & Renault (2012) used GC-MS to 22 

investigate the metabolic effects of this exposure, both in terms of an acute exposure, and a 23 

long-term recovery, showing that CO2 exposure resulted in acute metabolic changes that are 24 

present for 14 h. These changes were directly related to the anoxic conditions related to 25 

cardiovascular disruption. However, there was no indication of long-term alterations after a 26 

24-h period, allowing the conclusion that CO2 anaesthesia is an acceptable procedure when a 27 

longer recovery time is possible. With the exception of Chambers et al. (2012), the studies 28 

cited in this review either avoided the use of CO2 anaesthesia, or accounted for this recovery 29 

period in their methodology (Overgaard et al., 2007). 30 

 31 

Insect development and social behaviour 32 

1H NMR spectroscopy has been used to compare the haemolymph metabolome of nymphs of 33 

the desert locust, Schistocerca gregaria (Forskal), reared under both solitary and gregarious 34 
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conditions (Lenz et al., 2001). A number of metabolites varied across rearing conditions, 1 

including trehalose, lipids, acetate, and ethanol. However, later studies generated 2 

contradictory haemolymph metabolite identifications (Phalaraksh et al., 2008). A similar 3 

investigation utilised MS to examine solitary-gregarious behavioural transitions in a related 4 

locust species, Locusta migratoria (L.) (Wu et al., 2012). Direct comparisons of the 5 

haemolymph of solitary and gregarious phase locusts using high-performance LC-MS and 6 

GC-MS identified 319 metabolites exhibiting differential concentrations between the two 7 

phenotypes. Of these, carnitine was identified as a key differential metabolite regulating 8 

locust phase transition from solitary to gregarious, alongside its acyl derivatives. This study 9 

presents the first example of an MS approach being applied to link differences in insect 10 

behaviour with the underlying metabolomic state. 11 

 12 

Temperature-dependant stress responses 13 

The most common topic of insect metabolomics concerns fluctuations in the metabolome 14 

when subjects are exposed to a range of extreme temperatures (Table 1) due to both seasonal 15 

and daily cycles (Malmendal et al., 2006; Pedersen et al., 2008). Many insect species have 16 

developed biochemical, behavioural, or physiological adaptations to minimise the potential 17 

damage from these fluctuations (Michaud & Denlinger, 2007). Extensive study of the insect 18 

metabolome (particularly of Drosophila) under different temperature stresses has confirmed 19 

that these perturbations can have both short- and long-term effects on metabolite 20 

concentrations (Michaud et al., 2008), along with a more general effect on cellular 21 

homeostasis (Malmendal et al., 2006). These differences in metabolite fingerprint are 22 

conserved across various temperature treatments, and indicated that the concentrations of 23 

several major metabolites were significantly altered by heat-shock, including, but not limited 24 

to, primary amino acids, ATP, acetate, and glycogen (Malmendal et al., 2006). Notably, these 25 

differences do seem to be largely conserved across a number of species (Moriwaki et al., 26 

2003; Phalaraksh et al., 2008).  27 

Various studies, utilising both NMR and MS, have noted a similar effect from cold-28 

shock, with particular focus being placed on the inducement of an elevated level of glycerol. 29 

Alongside this, increases in sorbitol, proline, alanine, glutamine, pyruvate, glucose, and urea, 30 

and parallel decreases in trehalose, mannose, beta-alanine, and ornithine have been identified. 31 

Of these, the essential role of proline in surviving cold-shock has been documented using 32 

GC-MS/LC-MS in a study involving the survival of the drosophilid fly, Chymomyza costata 33 

(Zetterstedt), when submerged in liquid nitrogen during diapause (Koštál et al., 2011b). 34 
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Similar variations were noted in regards to seasonal variation in thermoperiod (Vesala et al., 1 

2012), whilst contrasting thermal environments during insect development indicated 2 

differentiation in the levels of glucose, fructose, alanine, and glycine, along with an 3 

accumulation of polyamines. Potential alterations in metabolites associated with energy 4 

metabolism also suggested an alteration in energy metabolism, similar to that observed after 5 

cold acclimation in Drosophila (Koštál et al., 2011a; Colinet et al., 2012a). This may also 6 

confirm findings by Colinet et al. (2012b), who demonstrated similar disruptions in energy 7 

metabolism under diapause in the aphid parasitoid Praon volucre (Haliday). 8 

 9 

Insect-plant interactions 10 

Some studies have indirectly used a metabolomic approach to draw conclusions about plant-11 

insect interactions (Allwood et al., 2008; Jansen et al., 2009; Leiss et al., 2009; Misra et al., 12 

2010). One investigation focused on the effects of herbivory by different instars of the beet 13 

armyworm, Spodoptera exigua Hübner. Through a combination of 1D and 2D 1H NMR, 14 

Widarto et al. (2006) were able to differentiate significant alterations in the metabolome of 15 

Brassica rapa L. leaves after the initiation of feeding damage. Spectral investigation, 16 

conducted using principle component analysis (PCA), indicated an increase in the levels of 17 

glucose, ferulic acid, and gluconapin in response to feeding by second-instar S. exigua, 18 

compared with an increase in alanine and sinapoyl malate for fourth-instar feeding. By 19 

comparison, larvae of the moth Plutella xylostella L., a more specialist herbivore, elicited an 20 

increase in gluconapin, glucose, feruloyl malate, sinapoyl malate, and threonine. This study 21 

again demonstrated some of the advantages associated with two dimensional NMR, as it was 22 

able to reduce assignment problems associated with overlapping spectral traces. 23 

 24 

Integrated metabolomic approaches 25 

An emerging trend within metabolomic research is to combine different high-throughput 26 

technologies to generate an integrated ‘-omics’ based approach. To date, four separate 27 

investigations have analysed insect tissues using a combination of metabolomics with either 28 

proteomics (Wang et al., 2010; Zhang et al., 2010) or transcriptomics (Teets et al., 2012; 29 

Derecka et al., 2013) and, to some extent, genomics (Derecka et al., 2013). These approaches 30 

attempted to correlate genomic/transcriptomic information with more ‘down-stream’ 31 

metabolomic or proteomic datasets. An integrated study investigated the symbiotic bacterial 32 

system present in the pea aphid, Acyrthosiphon pisum (Harris) (Wang et al., 2010); along 33 

with the metabolomic aspect of the investigation, the aphid proteome was also subject to 34 
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analysis. Utilising dietary antibiotics to eliminate the bacterium Buchnera aphidicola Munson 1 

et al., metabolomic analysis indicated alterations in metabolite and protein abundance (Wang 2 

et al., 2010). These changes were dominated by decreased essential amino acid abundance 3 

and an increase in non-essential amino acids. These findings also indicated that the bacterial 4 

proteome/metabolome is more substantially affected by antibiotic treatment than by dietary 5 

manipulation. The metabolomic-proteomic approach was similarly conducted by Zhang et al. 6 

(2012) to examine the brain of larval cotton bollworm, Helicoverpa armigera (Hübner), 7 

concurrent with artificial induction of seasonal diapause. This integrated approach clarified 8 

the control mechanisms that underlie the pre-diapause phases, and showed that a wide range 9 

of metabolism-related proteins and metabolites differ in concentration between diapause-10 

fated and non-diapause-fated larval brains. 11 

A combined transcriptomic-metabolomic approach (Teets et al., 2012) was used to 12 

investigate a different aspect of extremely cold environments, where water resources may be 13 

frozen for a large portion of the year, namely that of dehydration and desiccation tolerance. 14 

Using the Antarctic midge, Belgica antarctica Jacobs, an insect capable of surviving the loss 15 

of over 70% of body water, Teets et al. (2012) found that changes in gene expression 16 

associated with dehydration correlated strongly with changes in the metabolite pool. This 17 

study indicated that metabolic changes induced by the processes of desiccation and 18 

dehydration were remarkably similar, with changes occurring in such metabolites as 19 

glycolytic intermediates, lactate, proline, and citrate. These findings also indicate that 20 

metabolic responses are coordinated with changes in gene expression, a critical aspect of 21 

dehydration and desiccation responses. Transcriptomic comparisons with gene expression 22 

data derived from the arctic collembolan Megaphorura arctica (Tullberg), displayed little 23 

similarity in regulatory response (Teets et al., 2012), perhaps indicating that separate 24 

arthropod species have developed different compensatory mechanisms for low water 25 

availability (Teets et al., 2012). 26 

 27 

Entometabolomics: a critique of comparative studies 28 

The ground-breaking study by Thompson et al. (1990) on the metabolic effects of parasitism 29 

pre-dates the formalisation of metabolomics as a field and also the adoption of current 30 

technical and statistical approaches that reduce the complexity of metabolomic datasets. Our 31 

critique therefore excludes this study. We also exclude studies that, although recognisably 32 

metabolomic in their approach (Goodacre et al., 2004), are focussed on reporting the profile 33 

of insects in a single species or state. We restrict our consideration to studies that primarily 34 
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investigate the underlying metabolomic change that differentiates two or more phenotypic 1 

states. There have been 37 studies that meet this criterion, 33 of which were performed since 2 

the adoption of modern (i.e., post-2006) reporting standards (Fiehn et al., 2006; Sumner et al., 3 

2007). We suggest that improvements can be made in several areas, including sampling 4 

procedures, the countering of sampling and equipment variation, the use of sample extracts, 5 

statistical analyses, confirmation, and metabolite identification. 6 

 7 

Sampling procedures 8 

As previously detailed, low biomass (<1 mg) has typically required modifications to 9 

established solvent extraction methodologies. A common approach for improving yield in 10 

current entometabolomic approaches has been to pool insect tissue samples (e.g., Kamleh et 11 

al., 2008, 2009; Koštál et al., 2011a,b); pooling also appears to have been used to make 12 

individual samples more representative of a given population (e.g., a honey bee colony, Apis 13 

mellifera L.; Aliferis et al. 2012). Whereas pooling has largely overcome the problem of low 14 

spectral complexity, there is a trade-off with the number of replicates potentially available. 15 

Reduced replication, and hence lower statistical power during validation, increases the 16 

possibility of type II error (failing to reject an incorrect null hypothesis; Smith et al., 2011). 17 

Although low biomass may result in problems with yield, complex spectral information can 18 

be obtained from single large (>20 mg) insects (Lenz et al., 2001; Phalaraksh et al., 2008). 19 

Enhancement of the number of replicates within a treatment should typically take precedence 20 

when spectral yield is already substantial. Of the studies we consider, 63.6% (21/33) utilised 21 

adequate replication within each treatment (>5), as defined by current reporting standards 22 

(Fiehn et al., 2006; Goodacre et al., 2007; Sumner et al., 2007). Though sample sizes do not 23 

appear to have been adversely affected by pooling in these studies, it remains important to 24 

explicitly consider its desirability prior to experimental analysis. 25 

 26 

Tackling unwarranted variation 27 

An organism’s metabolome can be subject to fluctuations influenced by many environmental 28 

sources. Although these sources may seem minor, such as changes in diet or culture 29 

conditions, they can interfere with the composition of spectral and chromatographic data. As 30 

many insect cultures are maintained in a controlled environment, perturbations in 31 

temperature, photoperiod, and humidity from these sources are reduced. However, for a 32 

metabolomic approach to work correctly, it is also crucial to maintain uniformity across 33 

sample collection, extraction and processing conditions, along with analytical uniformity 34 
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(Wishart, 2008). Sample extraction conditions in particular can have several sources of 1 

contamination and unnecessary variation. Perhaps the most vital step in initial sample 2 

collection, halting metabolomic activity, can be compromised by failing to maintain suitable 3 

experimental conditions during sample extraction and pre-processing. Failure to maintain 4 

these conditions, usually by the use of ice-cold solvents, can result in further alterations in the 5 

metabolome during extraction: this is undesirable as the metabolomic approach attempts to 6 

assess an organism’s actual biochemical state. Unwanted variation can also occur if an 7 

extraction protocol requires a drying and reconstitution phase prior to analysis. For example, 8 

Li et al. (2010) utilised a rotary evaporator to dry samples at 43 °C for 3 h. Although high 9 

temperature may have affected the composition of the sample prior to analysis, it would also 10 

have advantageously decreased the time required for sample concentration. There can thus be 11 

a trade-off between processing time and sample stability, in which case it may be preferable 12 

to use less disruptive drying protocols, such as N2 evaporation. 13 

Imprecision of analytical equipment is another source of undesirable variation. The 14 

precision of an analytical approach is usually established through ‘technical replication’ 15 

which consists of separate analyses of sub-samples of each experimental replicate. The 16 

standard deviations of the measurements for key metabolites can then be assessed to evaluate 17 

the stability of the analytical methodology. Of the 33 post-reporting standards studies we are 18 

considering, only 15.2% (5/33) provided information regarding technical replication: all of 19 

these were able to adequately summarise this information in a single sentence within their 20 

materials and methods sections. Similarly, the stability of the chosen analytical method is 21 

often established through the continuous analysis of a pooled sample during a metabolomic 22 

experiment. Sub-samples are expected to cluster centrally within any multivariate analysis 23 

and exhibit low variability throughout the analytical timeframe. Whilst this approach is 24 

commonly utilised during high-sensitivity MS, some form of quality control sample can still 25 

be utilised by NMR spectroscopy. Despite this, only one investigation (Verberek et al., 2013) 26 

explicitly stated that a pooled quality control was used. The utilisation of a randomised 27 

sampling order, in order to reduce data skew stemming from instrument drift, was similarly 28 

reported by only a single study (Foray et al., 2013). It is possible that the remaining studies 29 

did not employ these common forms of validation. A more likely scenario is, however, that 30 

this detail was unreported due to its routine nature. Nevertheless, the lack of explicit reporting 31 

of quality control methods can cast doubt on the stability of a methodology, particularly in 32 

studies with large analytical timeframes. Another stability concern, specifically related to 33 

GC-MS, is the automatisation of derivatisation prior to analysis; a process which ensures an 34 
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identical processing time for each sample. Although studies utilising GC-MS all provided 1 

information regarding derivatisation, only 18.7% (3/16) provided supporting information on 2 

this automation.  3 

Photoperiod is one of the largest potential sources of variation in ecometabolomics 4 

(Beck, 1975; Koštál, 2006). Numerous studies have indicated that many metabolic pathways 5 

undergo photo-period dependent shifts, including the amino acid (Fernstrom et al., 1979; 6 

Gattolin et al., 2008), carbohydrate (Das et al., 2008; Seay & Thummel, 2011), lipid (Turek et 7 

al., 2005; Seay & Thummel, 2011), nucleotide (Kafka et al., 1986; Fustin et al., 2008), and 8 

even xenobiotic pathways (Claudel et al., 2007). These shifts can be correlated with the onset 9 

and cessation of major behavioural processes, perhaps most notable for entometabolomics is 10 

the control of feeding behaviour (Seay & Thummel, 2011). Despite the critical role of the 11 

circadian clock in influencing physiological and behavioural rhythms, 33% (11/33) of post-12 

2006 studies provided no supporting information for the experimental photoperiod. Of the 13 

remaining studies, 59% (13/22) used methodology that explicitly attempted to avoid 14 

variations in sample collection time. However, this figure is influenced by a high proportion 15 

of diapause related publications (6/22) which often require photoperiod-regulated induction 16 

prior to analysis. By comparison, 50% (2/4) of pre-2006 studies provided supporting 17 

information for photoperiod and 25% (1/4) accounted for this potential variation during 18 

sample collection. 19 

Although there is certainly room for improvement, it must be acknowledged that 20 

limiting the effects of photoperiod may not be practical for field-based investigations that rely 21 

on very little laboratory acclimation to maintain accuracy (Foray et al., 2013). However, as 22 

previously stated, it may still be possible to harmonise sample quenching times for both 23 

individual samples and treatment groups (Derecka et al., 2013). Similarly, investigations 24 

focusing on changes in behavioural (e.g., solitary vs. gregarious) or physiological state (e.g., 25 

diapause, parasitized) rather than a specified treatment period may struggle to standardise 26 

sample collection time. A possible means of limiting variation may be to standardise time 27 

between the onset of the desired state and sample quenching. 28 

 29 

Effective use of sample extracts 30 

There is a notable imbalance between metabolite classes examined in the studies we consider. 31 

Most (93.9%, 31/33) investigations have focused on polar metabolites, with a subset (21.2%, 32 

7/33) attempting to also profile the non-polar metabolites. Only one investigation (Derecka et 33 

al., 2013) focused exclusively on the non-polar or lipid fragment generated by a methanol-34 
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chloroform-water based extraction. Buszewska-Forajta et al. (2014a) primarily focused on 1 

analysing the lipid component, but these data were presented as the complement to polar data 2 

generated by Buszewska-Forajta et al. (2014b), the two publications being derived from the 3 

same study.  4 

The general lack of analysis of lipid fragments could be a major shortfall of 5 

entometabolomic investigations. This is due to the wide range of functions performed by the 6 

insect fat body, including energy storage and regulation (Arrese & Soulages, 2010), protein 7 

and nucleic acid production (Price, 1973), amino acid and carbohydrate production (Keeley, 8 

1985), and metamorphosis (Mirth & Riddiford, 2007). Numerous entometabolomic 9 

publications have focused on polar metabolites that are involved in these same metabolic 10 

processes (e.g., Overgaard et al., 2007; Foray et al., 2013). Whilst it is possible that analysis 11 

of the non-polar fragment did not yield differential results in these instances, lack of analysis 12 

of non-polar fragments could lead to the loss of complimentary information concerning polar 13 

metabolite concentrations. As detailed above, complimentary data on polar and non-polar 14 

metabolites can be generated by biphasic solvent extraction (Wu et al., 2008). With the recent 15 

emergence of a new sub-division of ‘-omics’ research, known as lipidomics (Wenk, 2005), it 16 

may prove advantageous to modify current solvent extraction protocols to favour a more lipo-17 

centric approach. 18 

 19 

Statistical analysis 20 

As multivariate data analysis identifies potential biomarkers and underlying sources of 21 

variation, it has been widely utilised in entometabolomic studies to demonstrate appropriate 22 

separation between experimental classes. It is particularly important that any fitted statistical 23 

model is capable of describing a high degree of variation whilst possessing the capability of 24 

accurate prediction. As a result, attempts at providing a more defined set of reporting 25 

standards have emphasised the documentation of specific model parameters, particularly the 26 

‘goodness’ of fit (termed R2X) and the ‘goodness’ of prediction (termed Q2X) (Eriksson et 27 

al., 2005). Within the studies we consider, only 11 of 33 reported an appropriate statistical 28 

model to establish separation between experimental treatments. A further four of these 29 

studies only provided rudimentary outline of the chosen statistical approach, without 30 

reporting relevant model parameters. Only 18.1% of the post-2006 publications provided 31 

supporting information for separation (i.e., R2X or Q2 values for partial least squares-32 

discriminant analysis (PLS-DA)), slightly fewer than in the pre-2006 literature (1/4, 25%). 33 

Although the establishment of overall separation and the provision of assessment 34 
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parameters are important with highly multidimensional metabolomic data, further validation 1 

is also required to establish significant differences for individual metabolites between classes. 2 

Of the previous 33 publications, 26 utilised either parametric or non-parametric statistical 3 

validation (78.8%). This is largely unchanged from pre-2006 studies (3/4, 75%). 4 

Entometabolomic studies have encountered common problems with parametric testing; 5 

perhaps the most important of these is the potential for artificial inflation of significance 6 

through multiple-hypothesis testing. Although statistical correction methods to control false 7 

discovery rates have long been available (Benjamini & Hochberg, 1995; Quinn & Keough, 8 

2002; Verhoeven et al., 2005), they were only employed by one of the five pre-2006 9 

publications. The percentage is higher among post-2006 studies (12/33, 36.4%). One 10 

particular recent investigation (Monteiro et al., 2013) did not apply any form of statistical 11 

testing, instead using an arbitrary cut-off to conclude whether differences were present or 12 

absent. Although it is possible that this approach could accord with results of formal 13 

hypothesis testing, this is by no means certain, especially with low numbers of replicates 14 

(Quinn & Keough, 2002). 15 

 16 

Metabolite confirmation, identification, and function 17 

It should also be noted that although both univariate and multivariate data analyses 18 

potentially generate lists of many differential compounds, it is important to confirm that this 19 

differentiation is based on real peaks, rather than noise. Furthermore, it is important to 20 

recognise that it is often not only difficult to identify the full range of spectral or 21 

chromatographic peaks, but also to correlate specific changes in the global metabolome with 22 

particular physiological or behavioural states. Data from both NMR and MS contain large 23 

overlapping peaks that can mask more subtle changes that may actually govern organism 24 

condition. Identification of what is accounting for these changes can be greatly enhanced by 25 

the application of knowledge of the biochemistry of the species concerned or of insects in 26 

general. Metabolite identification should employ as targeted an approach as possible, with 27 

earlier global profiling work acting as a screening process to identify potential metabolites of 28 

interest. 29 

The importance of accurate identification is an enduring concern in metabolomic 30 

research, resulting in entometabolomic approaches utilising confirmation methodologies even 31 

in studies prior to the 2006 adoption of reporting standards. Current reporting for 32 

metabolomic research has become highly detailed, particularly in regard to the confirmation 33 

and validation of experimental findings. As accurate identification of differential biomarkers 34 
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is a vital aspect of metabolomic investigations, many studies have employed further 1 

analytical methodologies, including tandem MS-MS and 2D NMR.. A number of 2 

investigations (45.5%) utilised and documented a further confirmation step, such as LC-MS-3 

MS or 2D NMR, to identify metabolites more confidently. Including putative approaches, all 4 

but two publications (Li et al., 2010; Vesala et al., 2012) provided identification utilising 5 

comparisons with known spectral and chromatographic standards, spectral databases, or 6 

tandem MS-MS fragmentation patterns. Whilst it is possible that the remaining two studies 7 

followed a similar identification protocol, this was not reported. 8 

One area that exhibited consistent reporting was that of metabolite function. Although 9 

a metabolomic approach is capable of generating differential information about separate 10 

organism phenotypes, the generation of robust conclusions from these data requires a 11 

thorough understanding and examination of known metabolite pathways and information. 12 

Post-2006 studies all included discussion of the potential function of differential metabolites, 13 

many correlating shifts within major pathways (e.g., glycolysis) and framing them within the 14 

context of major environmental perturbations (e.g., hypoxia) (Coquin et al., 2008). Pre-2006 15 

studies were similarly inclusive (4/4), though somewhat brief in the case of Lenz et al. 16 

(2001). 17 

 18 

Conclusions and recommendations 19 

Metabolomics has been applied to a number of insect study systems in an effective manner, 20 

generating new insights into the mechanisms underlying aspects of biology including 21 

behaviour (Lenz et al., 2001), infection (Chambers et al., 2012), temperature stress responses 22 

(Malmendal et al., 2006; Li et al., 2010; Colinet et al., 2012a), CO2 sedation (Colinet & 23 

Renault, 2012), and bacteria-insect symbiosis (Wang et al., 2009). We are sure that this list of 24 

topics will expand in the near future. 25 

Despite this success, there are opportunities to improve standards in terms of sample 26 

preparation, analytical methodology, statistical analysis, and reporting. The success or failure 27 

of a metabolomic investigation can depend on the rigour of the planning and developmental 28 

process preceding the investigation. In order to develop and employ an appropriate 29 

metabolomic workflow for an entomological study system, we recommend that future 30 

entometabolomic investigations follow points 1, 2, and 3 prior to experimental analysis, and 31 

points 4 and 5 before data analysis: 32 

1. Plan the experiment carefully in advance with full consultation between the biological 33 

and analytical collaborators. 34 
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2. Minimise possible sources of environmental contamination or variation. Though the 1 

degree of elimination can be somewhat subjective depending on the goals of the 2 

investigation, this has been widely achieved through maintenance of a sterile, sub-3 

zero °C environment throughout sample quenching, extraction, storage, and, if 4 

possible, analysis.  5 

3. Validate analytical methods. In order for an analytical method to be valid, it must be 6 

possible to demonstrate stability throughout the experimental timeframe. 7 

Recommended validation approaches include technical replication, randomisation of 8 

the sample injection order, and the use of a fixed internal standard. 9 

4. Validate univariate and multivariate data analysis. Multivariate cross validation 10 

should be employed to demonstrate the closeness of fit for a discriminant analysis, 11 

whereas appropriate test statistics (and when relevant, descriptive statistics) should be 12 

provided for any univariate validation. 13 

5. Provide robust supporting information for metabolomic data. Appropriate 14 

methodological and analytical metadata should be made available in order to 15 

maximise the utility of generated data to other researchers. 16 

Overall, it is clear that the employment of a metabolomics approach can identify correlations 17 

between a phenotypic state and the underlying cellular metabolism that older, more targeted, 18 

approaches are incapable of measuring. This unique combination of untargeted global 19 

analysis with high-resolution quantitative analysis presents an attractive tool for future 20 

entomological investigations. 21 
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 30 

 31 

Figure captions 32 

Figure 1 A sample data processing workflow. This investigation assessed differences in the 33 

larval metabolome across two pyralid moth species: rice moth (Corcyra cephalonica 34 
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Stainton) and Indian mealmoth (Plodia interpunctella Hübner) (C Snart, unpubl.). Lipid 1 

extracts were generated using a modified methanol-chloroform-water extraction protocol and 2 

analysed using LC-MS (A,B). LC-MS chromatograms were aligned to a common reference 3 

sample and framed using the Thermo SIEVE (Thermo Fisher Scientific, Waltham, MA, 4 

USA) processing software. Aligned and framed data were then exported to the statistical 5 

software SIMCA 13.0.3 (Umetrics, Umeå, Sweden) and analysed using PCA (C,D). Group 6 

clustering of samples based on the two experimental groups was confirmed in the negative 7 

electrospray ionisation (ESI) mode PCA analysis (C). The two treatment groups were defined 8 

and an PLS-DA analysis was utilised to directly compare between the two groups (R2X = 9 

0.706, R2Y = 0.988, Q2 = 0.98). A loadings plot was utilised to aid in identifying major 10 

differences between the two groups (D). Group-to-group comparisons were used to highlight 11 

loadings (highlighted in grey) associated with the two groups. These differential loadings 12 

were examined for their associated mass-to-charge ratios (m/z) and elution times (E). Using 13 

these values, variable ID 9 was identified as a cholesterol derivative based on consultation 14 

with online metabolite databases (LIPID MAPS and the Human Metabolome Database 15 

(HMDB). Further qualitative data for this metabolite were generated using the Thermo 16 

XCALIBUR software (Thermo Fisher Scientific). Mean relative abundances (± 1 SD) are 17 

shown on a bar chart (F) and ANOVA found a significant difference in metabolite level 18 

between the two groups (F). 19 

 20 

Figure 2 1H 600Mz aliphatic NMR spectra of the larvae of the rice moth, Corcyra 21 

cephalonica. Spectral information was generated through the use of modified Folch 22 

methanol-water-chloroform. Repeated investigations into the NMR profile of larval 23 

haemolymph have shown a remarkably conserved spectral structure (C Snart, ICW Hardy & 24 

DA Barrett, unpubl.). With the exception of the overlapping sugar-amino acid spectral region 25 

situated at 4.0-3.4 p.p.m., a high proportion of commonly observed peaks is readily 26 

assignable through simple literature comparison (Phalaraksh et al., 2008). Although exact 27 

spectral positions can vary based on the particular operating frequency of the instrument and 28 

environmental fluctuations, existing characterisations of tissue/haemolymph NMR spectra 29 

can aid in the normally extensive process of individual peak identification. Ala = Alanine, 30 

Arg = Arginine, Gln = Glutamine, Glu = Glutamic acid , Lys = Lysine, Pro = Proline. 31 

32 
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