58 research outputs found

    Editorial: Influence of environmental variability on climate change impacts in marine ecosystems

    Get PDF
    multiple drivers, environmental variability, Climate change, marine heatwaves, stressmemory, Ecological memory, Thermal performance curves, acclimatio

    Molecular, behavioural and morphological comparisons of sperm adaptations in a fish with alternative reproductive tactics

    Get PDF
    In species with alternative reproductive tactics, there is much empirical support that parasitically spawning males have larger testes and greater sperm numbers as an evolved response to a higher degree of sperm competition, but support for higher sperm performance (motility, longevity and speed) by such males is inconsistent. We used the sand goby (Pomatoschistus minutus) to test whether sperm performance differed between breeding-coloured males (small testes, large mucus-filled sperm-duct glands; build nests lined with sperm-containing mucus, provide care) and parasitic sneaker-morph males (no breeding colouration, large testes, rudimentary sperm-duct glands; no nest, no care). We compared motility (per cent motile sperm), velocity, longevity of sperm, gene expression of testes and sperm morphometrics between the two morphs. We also tested if sperm-duct gland contents affected sperm performance. We found a clear difference in gene expression of testes between the male morphs with 109 transcripts differentially expressed between the morphs. Notably, several mucin genes were upregulated in breeding-coloured males and two ATP-related genes were upregulated in sneaker-morph males. There was a partial evidence of higher sperm velocity in sneaker-morph males, but no difference in sperm motility. Presence of sperm-duct gland contents significantly increased sperm velocity, and nonsignificantly tended to increase sperm motility, but equally so for the two morphs. The sand goby has remarkably long-lived sperm, with only small or no decline in motility and velocity over time (5 min vs. 22 h), but again, this was equally true for both morphs. Sperm length (head, flagella, total and flagella-to-head ratio) did not differ between morphs and did not correlate with sperm velocity for either morph. Thus, other than a clear difference in testes gene expression, we found only modest differences between the two male morphs, confirming previous findings that increased sperm performance as an adaptation to sperm competition is not a primary target of evolution.</p

    Toxic Algae Silence Physiological Responses to Multiple Climate Drivers in a Tropical Marine Food Chain

    Get PDF
    Research on the effects of climate change in the marine environment continues to accelerate, yet we know little about the effects of multiple climate drivers in more complex, ecologically relevant settings – especially in sub-tropical and tropical systems. In marine ecosystems, climate change (warming and freshening from land run-off) will increase water column stratification which is favorable for toxin producing dinoflagellates. This can increase the prevalence of toxic microalgal species, leading to bioaccumulation of toxins by filter feeders, such as bivalves, with resultant negative impacts on physiological performance. In this study we manipulated multiple climate drivers (warming, freshening, and acidification), and the availability of toxic microalgae, to determine their impact on the physiological health, and toxin load of the tropical filter-feeding clam, Meretrix meretrix. Using a structural equation modeling (SEM) approach, we found that exposure to projected marine climates resulted in direct negative effects on metabolic and immunological function and, that these effects were often more pronounced in clams exposed to multiple, rather than single climate drivers. Furthermore, our study showed that these physiological responses were modified by indirect effects mediated through the food chain. Specifically, we found that when bivalves were fed with a toxin-producing dinoflagellate (Alexandrium minutum) the physiological responses, and toxin load changed differently and in a non-predictable way compared to clams exposed to projected marine climates only. Specifically, oxygen consumption data revealed that these clams did not respond physiologically to climate warming or the combined effects of warming, freshening and acidification. Our results highlight the importance of quantifying both direct and, indirect food chain effects of climate drivers on a key tropical food species, and have important implications for shellfish production and food safety in tropical regions.</p

    No barrier to emergence of bathyal king crabs on the Antarctic shelf

    Get PDF
    Cold-water conditions have excluded durophagous (skeleton-breaking) predators from the Antarctic seafloor for millions of years. Rapidly warming seas off the western Antarctic Peninsula could now facilitate their return to the continental shelf, with profound consequences for the endemic fauna. Among the likely first arrivals are king crabs (Lithodidae), which were discovered recently on the adjacent continental slope. During the austral summer of 2010‒2011, we used underwater imagery to survey a slope-dwelling population of the lithodid Paralomis birsteini off Marguerite Bay, western Antarctic Peninsula for environmental or trophic impediments to shoreward expansion. The population density averaged ∌4.5 individuals × 1,000 m(−2) within a depth range of 1,100‒1,500 m (overall observed depth range 841–2,266 m). Images of juveniles, discarded molts, and precopulatory behavior, as well as gravid females in a trapping study, suggested a reproductively viable population on the slope. At the time of the survey, there was no thermal barrier to prevent the lithodids from expanding upward and emerging on the outer shelf (400- to 550-m depth); however, near-surface temperatures remained too cold for them to survive in inner-shelf and coastal environments (<200 m). Ambient salinity, composition of the substrate, and the depth distribution of potential predators likewise indicated no barriers to expansion of lithodids onto the outer shelf. Primary food resources for lithodids—echinoderms and mollusks—were abundant on the upper slope (550–800 m) and outer shelf. As sea temperatures continue to rise, lithodids will likely play an increasingly important role in the trophic structure of subtidal communities closer to shore

    Seawater carbonate chemistry and biological processes during experiments with oyster Crassostrea gigas, 2009

    No full text
    An increasing number of studies are now reporting the effects of ocean acidification on a broad range of marine species, processes and systems. Many of these are investigating the sensitive early life-history stages that several major reviews have highlighted as being potentially most susceptible to ocean acidification. Nonetheless there remain few investigations of the effects of ocean acidification on the very earliest, and critical, process of fertilization, and still fewer that have investigated levels of ocean acidification relevant for the coming century. Here we report the effects of near-future levels of ocean acidification (~0.35 pH unit change) on sperm swimming speed, sperm motility, and fertilization kinetics in a population of the Pacific oyster Crassostrea gigas from western Sweden. We found no significant effect of ocean acidification - a result that was well-supported by power analysis. Similar findings from Japan suggest that this may be a globally robust result, and we emphasise the need for experiments on multiple populations from throughout a species' range. We also discuss the importance of sound experimental design and power analysis in meaningful interpretation of non-significant results

    Data from: A phenological shift in the time of recruitment of the shipworm, Teredo navalis L., mirrors marine climate change

    No full text
    For many species, seasonal changes in key environmental variables such as food availability, light, and temperature drive the timing (“phenology”) of major life-history events. Extensive evidence from terrestrial, freshwater, and marine habitats shows that global warming is changing the timings of many biological events; however, few of these studies have investigated the effects of climate change on the phenology of larval recruitment in marine invertebrates. Here, we studied temperature-related phenological shifts in the breeding season of the shipworm Teredo navalis (Mollusca, Bivalvia). We compared data for the recruitment period of T. navalis along the Swedish west coast during 2004–2006 with similar data from 1971–1973, and related differences in recruitment timing to changes in sea surface temperature over the same period. We found no significant shift in the timing of onset of recruitment over this ~30-year time span, but the end of recruitment was an average of 26 days later in recent years, leading to significantly longer recruitment periods. These changes correlated strongly with increased sea surface temperatures and coincided with published thermal tolerances for reproduction in T. navalis. Our findings are broadly comparable with other reports of phenological shifts in marine species, and suggest that warmer sea surface temperatures are increasing the likelihood of successful subannual reproduction and intensifying recruitment of T. navalis in this region

    REPRODUCTIVE EFFORT: ITS DEFINITION, MEASUREMENT AND INTERPRETATION IN RELATION TO MOLLUSCAN LIFE-HISTORY STRATEGIES

    No full text
    The concept of reproductive effort, as a construct of life-history theory, is defined and considered especially in relation to the differing larval reproductive strategies displayed by the nudibranch mollusca. Energetic data for four nudibranch species suggest a causal relationship between magnitude of reproductive effort and larval type: long-term pelagic planktotrophy appears to be commensurate with a higher reproductive effort while short-term pelagic lecithotrophy is associated with a lower reproductive effort. The data for nudibranchs are compared with prosobranchs from both marine and freshwater habitats and the resulting overall picture is one of a general lack of correlation between magnitude of reproductive effort and developmental mode. The validity of simple spawn output: adult soma ratios, as a measure of reproductive effort is discussed
    • 

    corecore